Loading…

Daily sound recognition using a combination of GMM and SVM for home automation

Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as...

Full description

Saved in:
Bibliographic Details
Main Authors: Sehili, M. A., Istrate, D., Dorizzi, B., Boudy, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1677
container_issue
container_start_page 1673
container_title
container_volume
creator Sehili, M. A.
Istrate, D.
Dorizzi, B.
Boudy, J.
description Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.
doi_str_mv 10.5281/zenodo.43299
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6334313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6334313</ieee_id><sourcerecordid>6334313</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3e8f025d088551b63ca70405179e8d410b39d981c8f3ffb9847d1add3426e2063</originalsourceid><addsrcrecordid>eNpNjLtOAzEURC0eEiGko6PxD2zw9bW9dokCBKQsFDzayLu2g1HWRvsowtcTBQqmGWnO0RByCWwuuYbrb5-yy3OB3JgjMuEcTCGFgWNyDkKVCExpc_IPnJFZ33-yfTSXnLMJebq1cbujfR6To51v8ibFIeZExz6mDbW0yW0dkz1sOdBlVVG7V1_eKxpyRz9y66kdh9welAtyGuy297O_npK3-7vXxUOxel4-Lm5WRYRSDgV6HRiXjmktJdQKG1sywSSUxmsngNVonNHQ6IAh1EaL0oF1DgVXnjOFU3L1-xu99-uvLra2260VokBA_AEma08A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Daily sound recognition using a combination of GMM and SVM for home automation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sehili, M. A. ; Istrate, D. ; Dorizzi, B. ; Boudy, J.</creator><creatorcontrib>Sehili, M. A. ; Istrate, D. ; Dorizzi, B. ; Boudy, J.</creatorcontrib><description>Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.</description><identifier>ISSN: 2219-5491</identifier><identifier>ISBN: 1467310689</identifier><identifier>ISBN: 9781467310680</identifier><identifier>EISSN: 2219-5491</identifier><identifier>DOI: 10.5281/zenodo.43299</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gaussian Mixture Models ; Kernel ; Noise ; Senior citizens ; Sound classification ; Speaker recognition ; Speech ; Support vector machines ; Vectors</subject><ispartof>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.1673-1677</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6334313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6334313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sehili, M. A.</creatorcontrib><creatorcontrib>Istrate, D.</creatorcontrib><creatorcontrib>Dorizzi, B.</creatorcontrib><creatorcontrib>Boudy, J.</creatorcontrib><title>Daily sound recognition using a combination of GMM and SVM for home automation</title><title>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</title><addtitle>EUSIPCO</addtitle><description>Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.</description><subject>Gaussian Mixture Models</subject><subject>Kernel</subject><subject>Noise</subject><subject>Senior citizens</subject><subject>Sound classification</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>Support vector machines</subject><subject>Vectors</subject><issn>2219-5491</issn><issn>2219-5491</issn><isbn>1467310689</isbn><isbn>9781467310680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjLtOAzEURC0eEiGko6PxD2zw9bW9dokCBKQsFDzayLu2g1HWRvsowtcTBQqmGWnO0RByCWwuuYbrb5-yy3OB3JgjMuEcTCGFgWNyDkKVCExpc_IPnJFZ33-yfTSXnLMJebq1cbujfR6To51v8ibFIeZExz6mDbW0yW0dkz1sOdBlVVG7V1_eKxpyRz9y66kdh9welAtyGuy297O_npK3-7vXxUOxel4-Lm5WRYRSDgV6HRiXjmktJdQKG1sywSSUxmsngNVonNHQ6IAh1EaL0oF1DgVXnjOFU3L1-xu99-uvLra2260VokBA_AEma08A</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Sehili, M. A.</creator><creator>Istrate, D.</creator><creator>Dorizzi, B.</creator><creator>Boudy, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Daily sound recognition using a combination of GMM and SVM for home automation</title><author>Sehili, M. A. ; Istrate, D. ; Dorizzi, B. ; Boudy, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3e8f025d088551b63ca70405179e8d410b39d981c8f3ffb9847d1add3426e2063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Gaussian Mixture Models</topic><topic>Kernel</topic><topic>Noise</topic><topic>Senior citizens</topic><topic>Sound classification</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>Support vector machines</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sehili, M. A.</creatorcontrib><creatorcontrib>Istrate, D.</creatorcontrib><creatorcontrib>Dorizzi, B.</creatorcontrib><creatorcontrib>Boudy, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sehili, M. A.</au><au>Istrate, D.</au><au>Dorizzi, B.</au><au>Boudy, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Daily sound recognition using a combination of GMM and SVM for home automation</atitle><btitle>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</btitle><stitle>EUSIPCO</stitle><date>2012-08</date><risdate>2012</risdate><spage>1673</spage><epage>1677</epage><pages>1673-1677</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><isbn>1467310689</isbn><isbn>9781467310680</isbn><abstract>Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.</abstract><pub>IEEE</pub><doi>10.5281/zenodo.43299</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2219-5491
ispartof 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.1673-1677
issn 2219-5491
2219-5491
language eng
recordid cdi_ieee_primary_6334313
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Gaussian Mixture Models
Kernel
Noise
Senior citizens
Sound classification
Speaker recognition
Speech
Support vector machines
Vectors
title Daily sound recognition using a combination of GMM and SVM for home automation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Daily%20sound%20recognition%20using%20a%20combination%20of%20GMM%20and%20SVM%20for%20home%20automation&rft.btitle=2012%20Proceedings%20of%20the%2020th%20European%20Signal%20Processing%20Conference%20(EUSIPCO)&rft.au=Sehili,%20M.%20A.&rft.date=2012-08&rft.spage=1673&rft.epage=1677&rft.pages=1673-1677&rft.issn=2219-5491&rft.eissn=2219-5491&rft.isbn=1467310689&rft.isbn_list=9781467310680&rft_id=info:doi/10.5281/zenodo.43299&rft_dat=%3Cieee_6IE%3E6334313%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3e8f025d088551b63ca70405179e8d410b39d981c8f3ffb9847d1add3426e2063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6334313&rfr_iscdi=true