Loading…
Daily sound recognition using a combination of GMM and SVM for home automation
Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1677 |
container_issue | |
container_start_page | 1673 |
container_title | |
container_volume | |
creator | Sehili, M. A. Istrate, D. Dorizzi, B. Boudy, J. |
description | Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM. |
doi_str_mv | 10.5281/zenodo.43299 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6334313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6334313</ieee_id><sourcerecordid>6334313</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3e8f025d088551b63ca70405179e8d410b39d981c8f3ffb9847d1add3426e2063</originalsourceid><addsrcrecordid>eNpNjLtOAzEURC0eEiGko6PxD2zw9bW9dokCBKQsFDzayLu2g1HWRvsowtcTBQqmGWnO0RByCWwuuYbrb5-yy3OB3JgjMuEcTCGFgWNyDkKVCExpc_IPnJFZ33-yfTSXnLMJebq1cbujfR6To51v8ibFIeZExz6mDbW0yW0dkz1sOdBlVVG7V1_eKxpyRz9y66kdh9welAtyGuy297O_npK3-7vXxUOxel4-Lm5WRYRSDgV6HRiXjmktJdQKG1sywSSUxmsngNVonNHQ6IAh1EaL0oF1DgVXnjOFU3L1-xu99-uvLra2260VokBA_AEma08A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Daily sound recognition using a combination of GMM and SVM for home automation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sehili, M. A. ; Istrate, D. ; Dorizzi, B. ; Boudy, J.</creator><creatorcontrib>Sehili, M. A. ; Istrate, D. ; Dorizzi, B. ; Boudy, J.</creatorcontrib><description>Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.</description><identifier>ISSN: 2219-5491</identifier><identifier>ISBN: 1467310689</identifier><identifier>ISBN: 9781467310680</identifier><identifier>EISSN: 2219-5491</identifier><identifier>DOI: 10.5281/zenodo.43299</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gaussian Mixture Models ; Kernel ; Noise ; Senior citizens ; Sound classification ; Speaker recognition ; Speech ; Support vector machines ; Vectors</subject><ispartof>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.1673-1677</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6334313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6334313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sehili, M. A.</creatorcontrib><creatorcontrib>Istrate, D.</creatorcontrib><creatorcontrib>Dorizzi, B.</creatorcontrib><creatorcontrib>Boudy, J.</creatorcontrib><title>Daily sound recognition using a combination of GMM and SVM for home automation</title><title>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</title><addtitle>EUSIPCO</addtitle><description>Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.</description><subject>Gaussian Mixture Models</subject><subject>Kernel</subject><subject>Noise</subject><subject>Senior citizens</subject><subject>Sound classification</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>Support vector machines</subject><subject>Vectors</subject><issn>2219-5491</issn><issn>2219-5491</issn><isbn>1467310689</isbn><isbn>9781467310680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjLtOAzEURC0eEiGko6PxD2zw9bW9dokCBKQsFDzayLu2g1HWRvsowtcTBQqmGWnO0RByCWwuuYbrb5-yy3OB3JgjMuEcTCGFgWNyDkKVCExpc_IPnJFZ33-yfTSXnLMJebq1cbujfR6To51v8ibFIeZExz6mDbW0yW0dkz1sOdBlVVG7V1_eKxpyRz9y66kdh9welAtyGuy297O_npK3-7vXxUOxel4-Lm5WRYRSDgV6HRiXjmktJdQKG1sywSSUxmsngNVonNHQ6IAh1EaL0oF1DgVXnjOFU3L1-xu99-uvLra2260VokBA_AEma08A</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Sehili, M. A.</creator><creator>Istrate, D.</creator><creator>Dorizzi, B.</creator><creator>Boudy, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Daily sound recognition using a combination of GMM and SVM for home automation</title><author>Sehili, M. A. ; Istrate, D. ; Dorizzi, B. ; Boudy, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3e8f025d088551b63ca70405179e8d410b39d981c8f3ffb9847d1add3426e2063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Gaussian Mixture Models</topic><topic>Kernel</topic><topic>Noise</topic><topic>Senior citizens</topic><topic>Sound classification</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>Support vector machines</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sehili, M. A.</creatorcontrib><creatorcontrib>Istrate, D.</creatorcontrib><creatorcontrib>Dorizzi, B.</creatorcontrib><creatorcontrib>Boudy, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sehili, M. A.</au><au>Istrate, D.</au><au>Dorizzi, B.</au><au>Boudy, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Daily sound recognition using a combination of GMM and SVM for home automation</atitle><btitle>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</btitle><stitle>EUSIPCO</stitle><date>2012-08</date><risdate>2012</risdate><spage>1673</spage><epage>1677</epage><pages>1673-1677</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><isbn>1467310689</isbn><isbn>9781467310680</isbn><abstract>Most elderly people monitoring systems include the detection of abnormal situations, in particular distress situations, as one of their main goals. In order to reach this objective, many solutions end up combining several modalities such as video tracking, fall detection and sound recognition, so as to increase the reliability of the system. In this work we focus on daily sound recognition as it is one of the most promising modalities. We make a comparison of two standard methods used for speaker recognition and verification: Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). Experimental results show the effectiveness of the combination of GMM and SVM in order to classify sound data sequences when compared to systems based on GMM.</abstract><pub>IEEE</pub><doi>10.5281/zenodo.43299</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2219-5491 |
ispartof | 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.1673-1677 |
issn | 2219-5491 2219-5491 |
language | eng |
recordid | cdi_ieee_primary_6334313 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Gaussian Mixture Models Kernel Noise Senior citizens Sound classification Speaker recognition Speech Support vector machines Vectors |
title | Daily sound recognition using a combination of GMM and SVM for home automation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Daily%20sound%20recognition%20using%20a%20combination%20of%20GMM%20and%20SVM%20for%20home%20automation&rft.btitle=2012%20Proceedings%20of%20the%2020th%20European%20Signal%20Processing%20Conference%20(EUSIPCO)&rft.au=Sehili,%20M.%20A.&rft.date=2012-08&rft.spage=1673&rft.epage=1677&rft.pages=1673-1677&rft.issn=2219-5491&rft.eissn=2219-5491&rft.isbn=1467310689&rft.isbn_list=9781467310680&rft_id=info:doi/10.5281/zenodo.43299&rft_dat=%3Cieee_6IE%3E6334313%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3e8f025d088551b63ca70405179e8d410b39d981c8f3ffb9847d1add3426e2063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6334313&rfr_iscdi=true |