Loading…

A robust quadratic stabilization synthesis for uncertain systems based on T-S fuzzy model

The problem of quadratic stability for a class of uncertain nonlinear systems using Takagi-Sugeno fuzzy model is solved and certain relaxed conditions are derived. Firstly, a new robust quadratic stability condition via designing state feedback controller for T-S fuzzy system with uncertainties is d...

Full description

Saved in:
Bibliographic Details
Main Authors: Stankovski, M., Stojanovski, G., Nadzinski, G., Zhaona Chen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 302
container_issue
container_start_page 297
container_title
container_volume
creator Stankovski, M.
Stojanovski, G.
Nadzinski, G.
Zhaona Chen
description The problem of quadratic stability for a class of uncertain nonlinear systems using Takagi-Sugeno fuzzy model is solved and certain relaxed conditions are derived. Firstly, a new robust quadratic stability condition via designing state feedback controller for T-S fuzzy system with uncertainties is derived. This condition is represented in the form of LMI and it is shown to be less conservative than similar known relaxed quadratic stabilization conditions in recent literature. Secondly, a dynamic output feedback control design for complex nonlinear systems represented by T-S fuzzy model is derived. These new techniques consider the interactions among all fuzzy subsystems. Finally, the applicability and validity of the proposed approach are demonstrated by means control design and simulation results for an illustrative example.
doi_str_mv 10.1109/IS.2012.6335233
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6335233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6335233</ieee_id><sourcerecordid>6335233</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2f78ba116f9500a150c62e38d59c55e99ca66005668e09b924c4f9540625bfba3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhM2XRFs6M7D4DyS8tmM7HquKQqVKDM3CVNmJLYzyAbEzJL-eVJTpdPecbjiEHgmkhIB63h9TCoSmgjFOGbtCayVzkgnJKJWSX6MFURlJCFXZDVr-A5HfzoCfgZD0Hi1D-AKgDEi-QB8b3HdmCBH_DLrqdfQlDlEbX_tpNl2Lw9jGTxt8wK7r8dCWto_an_MQbROw0cFWeC4WyRG7YZpG3HSVrR_QndN1sOuLrlCxeym2b8nh_XW_3RwSryAm1MncaEKEUxxAEw6loJblFVcl51apUgsBwIXILSijaFZmczUDQblxRrMVevqb9dba03fvG92Pp8tD7BfVLlWl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A robust quadratic stabilization synthesis for uncertain systems based on T-S fuzzy model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stankovski, M. ; Stojanovski, G. ; Nadzinski, G. ; Zhaona Chen</creator><creatorcontrib>Stankovski, M. ; Stojanovski, G. ; Nadzinski, G. ; Zhaona Chen</creatorcontrib><description>The problem of quadratic stability for a class of uncertain nonlinear systems using Takagi-Sugeno fuzzy model is solved and certain relaxed conditions are derived. Firstly, a new robust quadratic stability condition via designing state feedback controller for T-S fuzzy system with uncertainties is derived. This condition is represented in the form of LMI and it is shown to be less conservative than similar known relaxed quadratic stabilization conditions in recent literature. Secondly, a dynamic output feedback control design for complex nonlinear systems represented by T-S fuzzy model is derived. These new techniques consider the interactions among all fuzzy subsystems. Finally, the applicability and validity of the proposed approach are demonstrated by means control design and simulation results for an illustrative example.</description><identifier>ISSN: 1541-1672</identifier><identifier>ISBN: 1467322768</identifier><identifier>ISBN: 9781467322768</identifier><identifier>EISSN: 1941-1294</identifier><identifier>EISBN: 9781467322775</identifier><identifier>EISBN: 9781467322782</identifier><identifier>EISBN: 1467322776</identifier><identifier>EISBN: 1467322784</identifier><identifier>DOI: 10.1109/IS.2012.6335233</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fuzzy control ; Fuzzy system models ; nonlinear plants ; Nonlinear systems ; Output feedback ; quadratic stability ; Robustness ; Stability analysis ; uncertainties ; Uncertainty</subject><ispartof>2012 6th IEEE International Conference Intelligent Systems, 2012, p.297-302</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6335233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54796,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6335233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stankovski, M.</creatorcontrib><creatorcontrib>Stojanovski, G.</creatorcontrib><creatorcontrib>Nadzinski, G.</creatorcontrib><creatorcontrib>Zhaona Chen</creatorcontrib><title>A robust quadratic stabilization synthesis for uncertain systems based on T-S fuzzy model</title><title>2012 6th IEEE International Conference Intelligent Systems</title><addtitle>IS</addtitle><description>The problem of quadratic stability for a class of uncertain nonlinear systems using Takagi-Sugeno fuzzy model is solved and certain relaxed conditions are derived. Firstly, a new robust quadratic stability condition via designing state feedback controller for T-S fuzzy system with uncertainties is derived. This condition is represented in the form of LMI and it is shown to be less conservative than similar known relaxed quadratic stabilization conditions in recent literature. Secondly, a dynamic output feedback control design for complex nonlinear systems represented by T-S fuzzy model is derived. These new techniques consider the interactions among all fuzzy subsystems. Finally, the applicability and validity of the proposed approach are demonstrated by means control design and simulation results for an illustrative example.</description><subject>Fuzzy control</subject><subject>Fuzzy system models</subject><subject>nonlinear plants</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>quadratic stability</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>uncertainties</subject><subject>Uncertainty</subject><issn>1541-1672</issn><issn>1941-1294</issn><isbn>1467322768</isbn><isbn>9781467322768</isbn><isbn>9781467322775</isbn><isbn>9781467322782</isbn><isbn>1467322776</isbn><isbn>1467322784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kD1PwzAYhM2XRFs6M7D4DyS8tmM7HquKQqVKDM3CVNmJLYzyAbEzJL-eVJTpdPecbjiEHgmkhIB63h9TCoSmgjFOGbtCayVzkgnJKJWSX6MFURlJCFXZDVr-A5HfzoCfgZD0Hi1D-AKgDEi-QB8b3HdmCBH_DLrqdfQlDlEbX_tpNl2Lw9jGTxt8wK7r8dCWto_an_MQbROw0cFWeC4WyRG7YZpG3HSVrR_QndN1sOuLrlCxeym2b8nh_XW_3RwSryAm1MncaEKEUxxAEw6loJblFVcl51apUgsBwIXILSijaFZmczUDQblxRrMVevqb9dba03fvG92Pp8tD7BfVLlWl</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Stankovski, M.</creator><creator>Stojanovski, G.</creator><creator>Nadzinski, G.</creator><creator>Zhaona Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>A robust quadratic stabilization synthesis for uncertain systems based on T-S fuzzy model</title><author>Stankovski, M. ; Stojanovski, G. ; Nadzinski, G. ; Zhaona Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2f78ba116f9500a150c62e38d59c55e99ca66005668e09b924c4f9540625bfba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Fuzzy control</topic><topic>Fuzzy system models</topic><topic>nonlinear plants</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>quadratic stability</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>uncertainties</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankovski, M.</creatorcontrib><creatorcontrib>Stojanovski, G.</creatorcontrib><creatorcontrib>Nadzinski, G.</creatorcontrib><creatorcontrib>Zhaona Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stankovski, M.</au><au>Stojanovski, G.</au><au>Nadzinski, G.</au><au>Zhaona Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A robust quadratic stabilization synthesis for uncertain systems based on T-S fuzzy model</atitle><btitle>2012 6th IEEE International Conference Intelligent Systems</btitle><stitle>IS</stitle><date>2012-09</date><risdate>2012</risdate><spage>297</spage><epage>302</epage><pages>297-302</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><isbn>1467322768</isbn><isbn>9781467322768</isbn><eisbn>9781467322775</eisbn><eisbn>9781467322782</eisbn><eisbn>1467322776</eisbn><eisbn>1467322784</eisbn><abstract>The problem of quadratic stability for a class of uncertain nonlinear systems using Takagi-Sugeno fuzzy model is solved and certain relaxed conditions are derived. Firstly, a new robust quadratic stability condition via designing state feedback controller for T-S fuzzy system with uncertainties is derived. This condition is represented in the form of LMI and it is shown to be less conservative than similar known relaxed quadratic stabilization conditions in recent literature. Secondly, a dynamic output feedback control design for complex nonlinear systems represented by T-S fuzzy model is derived. These new techniques consider the interactions among all fuzzy subsystems. Finally, the applicability and validity of the proposed approach are demonstrated by means control design and simulation results for an illustrative example.</abstract><pub>IEEE</pub><doi>10.1109/IS.2012.6335233</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof 2012 6th IEEE International Conference Intelligent Systems, 2012, p.297-302
issn 1541-1672
1941-1294
language eng
recordid cdi_ieee_primary_6335233
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fuzzy control
Fuzzy system models
nonlinear plants
Nonlinear systems
Output feedback
quadratic stability
Robustness
Stability analysis
uncertainties
Uncertainty
title A robust quadratic stabilization synthesis for uncertain systems based on T-S fuzzy model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20robust%20quadratic%20stabilization%20synthesis%20for%20uncertain%20systems%20based%20on%20T-S%20fuzzy%20model&rft.btitle=2012%206th%20IEEE%20International%20Conference%20Intelligent%20Systems&rft.au=Stankovski,%20M.&rft.date=2012-09&rft.spage=297&rft.epage=302&rft.pages=297-302&rft.issn=1541-1672&rft.eissn=1941-1294&rft.isbn=1467322768&rft.isbn_list=9781467322768&rft_id=info:doi/10.1109/IS.2012.6335233&rft.eisbn=9781467322775&rft.eisbn_list=9781467322782&rft.eisbn_list=1467322776&rft.eisbn_list=1467322784&rft_dat=%3Cieee_6IE%3E6335233%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-2f78ba116f9500a150c62e38d59c55e99ca66005668e09b924c4f9540625bfba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6335233&rfr_iscdi=true