Loading…

Detecting concept drift in fully distributed environments

Applying sophisticated machine learning techniques on fully distributed data is increasingly important in many applications like distributed recommender systems or spam filters. In this type of networked environment the data model can change dynamically over time (concept drift). Identifying when co...

Full description

Saved in:
Bibliographic Details
Main Authors: Hegedus, I., Nyers, L., Ormandi, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 188
container_issue
container_start_page 183
container_title
container_volume
creator Hegedus, I.
Nyers, L.
Ormandi, R.
description Applying sophisticated machine learning techniques on fully distributed data is increasingly important in many applications like distributed recommender systems or spam filters. In this type of networked environment the data model can change dynamically over time (concept drift). Identifying when concept drift occurred is a key for several drift handling techniques and important in numerous scenarios. However drift handling approaches exist, no efficient solution for detecting the drift is known in very large scale networks. Here, we propose an approach that can detect the concept drift in large scale and fully distributed networks. In our approach, the learning is performed by applying online learners that take random walks in the network while updating themselves using the samples available at the nodes. The drift detection is based on an adaptive mechanism which uses the historical performances of the models. Through empirical evaluations we demonstrate that our approach handles the drifting concept while additionally detects the occurrence of the concept drift with high accuracy.
doi_str_mv 10.1109/SISY.2012.6339511
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6339511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6339511</ieee_id><sourcerecordid>6339511</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1331-54f32dbed9e58fcad820e76ebf7027805cc58f46635589d971397750d88e8fc03</originalsourceid><addsrcrecordid>eNo9UM1KAzEYjH9grfsA4iUvsGu-_GySo9SqhYKHKuip7CZfJLJNy24q9O1dsDqXgZlhYIaQG2AVALN3q8Xqo-IMeFULYRXACSmsNiBrLaRWDE7JBKy0JZPGnJGrPwPU-b-h3y9JMQxfbITgpuZ6QuwDZnQ5pk_qtsnhLlPfx5BpTDTsu-5AfRxyH9t9Rk8xfcd-mzaY8nBNLkLTDVgceUreHuevs-dy-fK0mN0vywhCQKlkENy36C0qE1zjDWeoa2yDZlwbppwbdVnXQiljvdUgrB4HeWNwzDMxJbe_vRER17s-bpr-sD6-IH4AI69L9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting concept drift in fully distributed environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hegedus, I. ; Nyers, L. ; Ormandi, R.</creator><creatorcontrib>Hegedus, I. ; Nyers, L. ; Ormandi, R.</creatorcontrib><description>Applying sophisticated machine learning techniques on fully distributed data is increasingly important in many applications like distributed recommender systems or spam filters. In this type of networked environment the data model can change dynamically over time (concept drift). Identifying when concept drift occurred is a key for several drift handling techniques and important in numerous scenarios. However drift handling approaches exist, no efficient solution for detecting the drift is known in very large scale networks. Here, we propose an approach that can detect the concept drift in large scale and fully distributed networks. In our approach, the learning is performed by applying online learners that take random walks in the network while updating themselves using the samples available at the nodes. The drift detection is based on an adaptive mechanism which uses the historical performances of the models. Through empirical evaluations we demonstrate that our approach handles the drifting concept while additionally detects the occurrence of the concept drift with high accuracy.</description><identifier>ISSN: 1949-047X</identifier><identifier>ISBN: 1467347515</identifier><identifier>ISBN: 9781467347518</identifier><identifier>EISSN: 1949-0488</identifier><identifier>EISBN: 9781467347501</identifier><identifier>EISBN: 1467347507</identifier><identifier>EISBN: 1467347493</identifier><identifier>EISBN: 9781467347495</identifier><identifier>DOI: 10.1109/SISY.2012.6339511</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; adaptive classification ; concept drift ; Data models ; History ; P2P ; Peer to peer computing ; Protocols ; Training</subject><ispartof>2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, 2012, p.183-188</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6339511$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6339511$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hegedus, I.</creatorcontrib><creatorcontrib>Nyers, L.</creatorcontrib><creatorcontrib>Ormandi, R.</creatorcontrib><title>Detecting concept drift in fully distributed environments</title><title>2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics</title><addtitle>SISY</addtitle><description>Applying sophisticated machine learning techniques on fully distributed data is increasingly important in many applications like distributed recommender systems or spam filters. In this type of networked environment the data model can change dynamically over time (concept drift). Identifying when concept drift occurred is a key for several drift handling techniques and important in numerous scenarios. However drift handling approaches exist, no efficient solution for detecting the drift is known in very large scale networks. Here, we propose an approach that can detect the concept drift in large scale and fully distributed networks. In our approach, the learning is performed by applying online learners that take random walks in the network while updating themselves using the samples available at the nodes. The drift detection is based on an adaptive mechanism which uses the historical performances of the models. Through empirical evaluations we demonstrate that our approach handles the drifting concept while additionally detects the occurrence of the concept drift with high accuracy.</description><subject>Adaptation models</subject><subject>adaptive classification</subject><subject>concept drift</subject><subject>Data models</subject><subject>History</subject><subject>P2P</subject><subject>Peer to peer computing</subject><subject>Protocols</subject><subject>Training</subject><issn>1949-047X</issn><issn>1949-0488</issn><isbn>1467347515</isbn><isbn>9781467347518</isbn><isbn>9781467347501</isbn><isbn>1467347507</isbn><isbn>1467347493</isbn><isbn>9781467347495</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UM1KAzEYjH9grfsA4iUvsGu-_GySo9SqhYKHKuip7CZfJLJNy24q9O1dsDqXgZlhYIaQG2AVALN3q8Xqo-IMeFULYRXACSmsNiBrLaRWDE7JBKy0JZPGnJGrPwPU-b-h3y9JMQxfbITgpuZ6QuwDZnQ5pk_qtsnhLlPfx5BpTDTsu-5AfRxyH9t9Rk8xfcd-mzaY8nBNLkLTDVgceUreHuevs-dy-fK0mN0vywhCQKlkENy36C0qE1zjDWeoa2yDZlwbppwbdVnXQiljvdUgrB4HeWNwzDMxJbe_vRER17s-bpr-sD6-IH4AI69L9g</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Hegedus, I.</creator><creator>Nyers, L.</creator><creator>Ormandi, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Detecting concept drift in fully distributed environments</title><author>Hegedus, I. ; Nyers, L. ; Ormandi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1331-54f32dbed9e58fcad820e76ebf7027805cc58f46635589d971397750d88e8fc03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>adaptive classification</topic><topic>concept drift</topic><topic>Data models</topic><topic>History</topic><topic>P2P</topic><topic>Peer to peer computing</topic><topic>Protocols</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hegedus, I.</creatorcontrib><creatorcontrib>Nyers, L.</creatorcontrib><creatorcontrib>Ormandi, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hegedus, I.</au><au>Nyers, L.</au><au>Ormandi, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting concept drift in fully distributed environments</atitle><btitle>2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics</btitle><stitle>SISY</stitle><date>2012-09</date><risdate>2012</risdate><spage>183</spage><epage>188</epage><pages>183-188</pages><issn>1949-047X</issn><eissn>1949-0488</eissn><isbn>1467347515</isbn><isbn>9781467347518</isbn><eisbn>9781467347501</eisbn><eisbn>1467347507</eisbn><eisbn>1467347493</eisbn><eisbn>9781467347495</eisbn><abstract>Applying sophisticated machine learning techniques on fully distributed data is increasingly important in many applications like distributed recommender systems or spam filters. In this type of networked environment the data model can change dynamically over time (concept drift). Identifying when concept drift occurred is a key for several drift handling techniques and important in numerous scenarios. However drift handling approaches exist, no efficient solution for detecting the drift is known in very large scale networks. Here, we propose an approach that can detect the concept drift in large scale and fully distributed networks. In our approach, the learning is performed by applying online learners that take random walks in the network while updating themselves using the samples available at the nodes. The drift detection is based on an adaptive mechanism which uses the historical performances of the models. Through empirical evaluations we demonstrate that our approach handles the drifting concept while additionally detects the occurrence of the concept drift with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/SISY.2012.6339511</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-047X
ispartof 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, 2012, p.183-188
issn 1949-047X
1949-0488
language eng
recordid cdi_ieee_primary_6339511
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
adaptive classification
concept drift
Data models
History
P2P
Peer to peer computing
Protocols
Training
title Detecting concept drift in fully distributed environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20concept%20drift%20in%20fully%20distributed%20environments&rft.btitle=2012%20IEEE%2010th%20Jubilee%20International%20Symposium%20on%20Intelligent%20Systems%20and%20Informatics&rft.au=Hegedus,%20I.&rft.date=2012-09&rft.spage=183&rft.epage=188&rft.pages=183-188&rft.issn=1949-047X&rft.eissn=1949-0488&rft.isbn=1467347515&rft.isbn_list=9781467347518&rft_id=info:doi/10.1109/SISY.2012.6339511&rft.eisbn=9781467347501&rft.eisbn_list=1467347507&rft.eisbn_list=1467347493&rft.eisbn_list=9781467347495&rft_dat=%3Cieee_6IE%3E6339511%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1331-54f32dbed9e58fcad820e76ebf7027805cc58f46635589d971397750d88e8fc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6339511&rfr_iscdi=true