Loading…

An empirical study on risk data quality management

Risk management is a critical core process of a financial corporation, which has been attracted more attention by the governors since The Financial Crisis. New regulations require more strict control over corporation's risk, which needs data of better quality. In this paper, we propose a compre...

Full description

Saved in:
Bibliographic Details
Main Authors: Lizheng Jiang, Jiantao Zhao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 514
container_issue
container_start_page 511
container_title
container_volume 1
creator Lizheng Jiang
Jiantao Zhao
description Risk management is a critical core process of a financial corporation, which has been attracted more attention by the governors since The Financial Crisis. New regulations require more strict control over corporation's risk, which needs data of better quality. In this paper, we propose a comprehensive framework for risk data quality management. New data quality dimensions that combine business rules are designed to reflect the risk management requirements. According to the detailed dimensions, we examine large amount of heterogeneous data in a bank to find the difference between the normal standard and the current data. Enterprises should take appropriate measures to improve the data quality to meet the standard. Experiments show that the framework is effective.
doi_str_mv 10.1109/ICIII.2012.6339714
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6339714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6339714</ieee_id><sourcerecordid>6339714</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fbf3247ec5dd1a5529c529180c97deba3d075a9cbb9ebd6632dda69eb01fb7fc3</originalsourceid><addsrcrecordid>eNo9j81Kw0AUhUerYFv7ArqZF0icOzcz01mW4E-g4Kb7cucnZTSJNUkXeXsLVheH78AHBw5jDyByAGGfqrKqqlwKkLlGtAaKK7ayZg2FNggWwVyzuQSlMiiMnLHFn5Dq5l8ofccWw_AhhEaNYs7kpuOxPaY-eWr4MJ7CxL863qfhkwcaiX-fqEnjxFvq6BDb2I337LamZoirC5ds9_K8K9-y7ftrVW62WbJizGpXoyxM9CoEIKWk9efAWnhrQnSEQRhF1jtnowtaowyB9LkLqJ2pPS7Z4-9sijHuj31qqZ_2l-v4A68rSX4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An empirical study on risk data quality management</title><source>IEEE Xplore All Conference Series</source><creator>Lizheng Jiang ; Jiantao Zhao</creator><creatorcontrib>Lizheng Jiang ; Jiantao Zhao</creatorcontrib><description>Risk management is a critical core process of a financial corporation, which has been attracted more attention by the governors since The Financial Crisis. New regulations require more strict control over corporation's risk, which needs data of better quality. In this paper, we propose a comprehensive framework for risk data quality management. New data quality dimensions that combine business rules are designed to reflect the risk management requirements. According to the detailed dimensions, we examine large amount of heterogeneous data in a bank to find the difference between the normal standard and the current data. Enterprises should take appropriate measures to improve the data quality to meet the standard. Experiments show that the framework is effective.</description><identifier>ISSN: 2155-1456</identifier><identifier>ISBN: 1467319325</identifier><identifier>ISBN: 9781467319324</identifier><identifier>EISSN: 2155-1472</identifier><identifier>EISBN: 9781467319317</identifier><identifier>EISBN: 1467319317</identifier><identifier>DOI: 10.1109/ICIII.2012.6339714</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; business rule ; data quality ; Phase measurement ; Process control ; quality dimensions ; Quality management ; Risk management</subject><ispartof>2012 International Conference on Information Management, Innovation Management and Industrial Engineering, 2012, Vol.1, p.511-514</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6339714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6339714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lizheng Jiang</creatorcontrib><creatorcontrib>Jiantao Zhao</creatorcontrib><title>An empirical study on risk data quality management</title><title>2012 International Conference on Information Management, Innovation Management and Industrial Engineering</title><addtitle>ICIII</addtitle><description>Risk management is a critical core process of a financial corporation, which has been attracted more attention by the governors since The Financial Crisis. New regulations require more strict control over corporation's risk, which needs data of better quality. In this paper, we propose a comprehensive framework for risk data quality management. New data quality dimensions that combine business rules are designed to reflect the risk management requirements. According to the detailed dimensions, we examine large amount of heterogeneous data in a bank to find the difference between the normal standard and the current data. Enterprises should take appropriate measures to improve the data quality to meet the standard. Experiments show that the framework is effective.</description><subject>Accuracy</subject><subject>business rule</subject><subject>data quality</subject><subject>Phase measurement</subject><subject>Process control</subject><subject>quality dimensions</subject><subject>Quality management</subject><subject>Risk management</subject><issn>2155-1456</issn><issn>2155-1472</issn><isbn>1467319325</isbn><isbn>9781467319324</isbn><isbn>9781467319317</isbn><isbn>1467319317</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j81Kw0AUhUerYFv7ArqZF0icOzcz01mW4E-g4Kb7cucnZTSJNUkXeXsLVheH78AHBw5jDyByAGGfqrKqqlwKkLlGtAaKK7ayZg2FNggWwVyzuQSlMiiMnLHFn5Dq5l8ofccWw_AhhEaNYs7kpuOxPaY-eWr4MJ7CxL863qfhkwcaiX-fqEnjxFvq6BDb2I337LamZoirC5ds9_K8K9-y7ftrVW62WbJizGpXoyxM9CoEIKWk9efAWnhrQnSEQRhF1jtnowtaowyB9LkLqJ2pPS7Z4-9sijHuj31qqZ_2l-v4A68rSX4</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Lizheng Jiang</creator><creator>Jiantao Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>An empirical study on risk data quality management</title><author>Lizheng Jiang ; Jiantao Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fbf3247ec5dd1a5529c529180c97deba3d075a9cbb9ebd6632dda69eb01fb7fc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>business rule</topic><topic>data quality</topic><topic>Phase measurement</topic><topic>Process control</topic><topic>quality dimensions</topic><topic>Quality management</topic><topic>Risk management</topic><toplevel>online_resources</toplevel><creatorcontrib>Lizheng Jiang</creatorcontrib><creatorcontrib>Jiantao Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lizheng Jiang</au><au>Jiantao Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An empirical study on risk data quality management</atitle><btitle>2012 International Conference on Information Management, Innovation Management and Industrial Engineering</btitle><stitle>ICIII</stitle><date>2012-10</date><risdate>2012</risdate><volume>1</volume><spage>511</spage><epage>514</epage><pages>511-514</pages><issn>2155-1456</issn><eissn>2155-1472</eissn><isbn>1467319325</isbn><isbn>9781467319324</isbn><eisbn>9781467319317</eisbn><eisbn>1467319317</eisbn><abstract>Risk management is a critical core process of a financial corporation, which has been attracted more attention by the governors since The Financial Crisis. New regulations require more strict control over corporation's risk, which needs data of better quality. In this paper, we propose a comprehensive framework for risk data quality management. New data quality dimensions that combine business rules are designed to reflect the risk management requirements. According to the detailed dimensions, we examine large amount of heterogeneous data in a bank to find the difference between the normal standard and the current data. Enterprises should take appropriate measures to improve the data quality to meet the standard. Experiments show that the framework is effective.</abstract><pub>IEEE</pub><doi>10.1109/ICIII.2012.6339714</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-1456
ispartof 2012 International Conference on Information Management, Innovation Management and Industrial Engineering, 2012, Vol.1, p.511-514
issn 2155-1456
2155-1472
language eng
recordid cdi_ieee_primary_6339714
source IEEE Xplore All Conference Series
subjects Accuracy
business rule
data quality
Phase measurement
Process control
quality dimensions
Quality management
Risk management
title An empirical study on risk data quality management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20empirical%20study%20on%20risk%20data%20quality%20management&rft.btitle=2012%20International%20Conference%20on%20Information%20Management,%20Innovation%20Management%20and%20Industrial%20Engineering&rft.au=Lizheng%20Jiang&rft.date=2012-10&rft.volume=1&rft.spage=511&rft.epage=514&rft.pages=511-514&rft.issn=2155-1456&rft.eissn=2155-1472&rft.isbn=1467319325&rft.isbn_list=9781467319324&rft_id=info:doi/10.1109/ICIII.2012.6339714&rft.eisbn=9781467319317&rft.eisbn_list=1467319317&rft_dat=%3Cieee_CHZPO%3E6339714%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-fbf3247ec5dd1a5529c529180c97deba3d075a9cbb9ebd6632dda69eb01fb7fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6339714&rfr_iscdi=true