Loading…

EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb

Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imag...

Full description

Saved in:
Bibliographic Details
Main Authors: Cincotti, F., Pichiorri, F., Arico, P., Aloise, F., Leotta, F., de Vico Fallani, F., del R Millan, J., Molinari, M., Mattia, D.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-57cfc98a42c9a31940159e6e7fdc404e2ee2449d6c7421d4917171922fd524313
cites
container_end_page 4115
container_issue
container_start_page 4112
container_title
container_volume 2012
creator Cincotti, F.
Pichiorri, F.
Arico, P.
Aloise, F.
Leotta, F.
de Vico Fallani, F.
del R Millan, J.
Molinari, M.
Mattia, D.
description Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.
doi_str_mv 10.1109/EMBC.2012.6346871
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6346871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6346871</ieee_id><sourcerecordid>1283725543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-57cfc98a42c9a31940159e6e7fdc404e2ee2449d6c7421d4917171922fd524313</originalsourceid><addsrcrecordid>eNotkE9PwzAMxcM_sQH7AIhLjlw66sRpmiOrxkACcQGJ28haVxTapSTZgW9PpM0HW0_--Ul-jF1DPgfIzd3yZVHNRQ5iXkgsSg1HbGZ0Cai0Bp30MZuCUmWGBagTdgEoEBHAFKdpkRvM0tHHhM1C-M5TlVDKHM_ZREhZFKUUU_a5XK6yjQ3U8IW33Tar3DDuInn-tE29tTXx6HjYjaPzkY8uxCxE736IDy46zz192U3Xd9HGzm25a3n8Ip7wZNF3w-aKnbW2DzQ7zEv2_rB8qx6z59fVU3X_nNWIJmZK121tSouiNlaCwRyUoYJ029SYIwmi9JtpilqjgAYNpATACNE2SqAEeclu976jd787CnE9dKGmvrdbcruwBlFKLZRCmdCbPdoR0Xr03WD93_oQsfwH7GJoiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1283725543</pqid></control><display><type>conference_proceeding</type><title>EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cincotti, F. ; Pichiorri, F. ; Arico, P. ; Aloise, F. ; Leotta, F. ; de Vico Fallani, F. ; del R Millan, J. ; Molinari, M. ; Mattia, D.</creator><creatorcontrib>Cincotti, F. ; Pichiorri, F. ; Arico, P. ; Aloise, F. ; Leotta, F. ; de Vico Fallani, F. ; del R Millan, J. ; Molinari, M. ; Mattia, D.</creatorcontrib><description>Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 1424441196</identifier><identifier>ISBN: 9781424441198</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781457717871</identifier><identifier>EISBN: 1457717875</identifier><identifier>DOI: 10.1109/EMBC.2012.6346871</identifier><identifier>PMID: 23366832</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain computer interfaces ; Electroencephalography ; Electromyography ; Neuroplasticity ; Training ; Visualization</subject><ispartof>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.4112-4115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-57cfc98a42c9a31940159e6e7fdc404e2ee2449d6c7421d4917171922fd524313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6346871$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6346871$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cincotti, F.</creatorcontrib><creatorcontrib>Pichiorri, F.</creatorcontrib><creatorcontrib>Arico, P.</creatorcontrib><creatorcontrib>Aloise, F.</creatorcontrib><creatorcontrib>Leotta, F.</creatorcontrib><creatorcontrib>de Vico Fallani, F.</creatorcontrib><creatorcontrib>del R Millan, J.</creatorcontrib><creatorcontrib>Molinari, M.</creatorcontrib><creatorcontrib>Mattia, D.</creatorcontrib><title>EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb</title><title>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>EMBC</addtitle><description>Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.</description><subject>Brain computer interfaces</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Neuroplasticity</subject><subject>Training</subject><subject>Visualization</subject><issn>1094-687X</issn><issn>1558-4615</issn><issn>2694-0604</issn><isbn>1424441196</isbn><isbn>9781424441198</isbn><isbn>9781457717871</isbn><isbn>1457717875</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9PwzAMxcM_sQH7AIhLjlw66sRpmiOrxkACcQGJ28haVxTapSTZgW9PpM0HW0_--Ul-jF1DPgfIzd3yZVHNRQ5iXkgsSg1HbGZ0Cai0Bp30MZuCUmWGBagTdgEoEBHAFKdpkRvM0tHHhM1C-M5TlVDKHM_ZREhZFKUUU_a5XK6yjQ3U8IW33Tar3DDuInn-tE29tTXx6HjYjaPzkY8uxCxE736IDy46zz192U3Xd9HGzm25a3n8Ip7wZNF3w-aKnbW2DzQ7zEv2_rB8qx6z59fVU3X_nNWIJmZK121tSouiNlaCwRyUoYJ029SYIwmi9JtpilqjgAYNpATACNE2SqAEeclu976jd787CnE9dKGmvrdbcruwBlFKLZRCmdCbPdoR0Xr03WD93_oQsfwH7GJoiQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Cincotti, F.</creator><creator>Pichiorri, F.</creator><creator>Arico, P.</creator><creator>Aloise, F.</creator><creator>Leotta, F.</creator><creator>de Vico Fallani, F.</creator><creator>del R Millan, J.</creator><creator>Molinari, M.</creator><creator>Mattia, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20120101</creationdate><title>EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb</title><author>Cincotti, F. ; Pichiorri, F. ; Arico, P. ; Aloise, F. ; Leotta, F. ; de Vico Fallani, F. ; del R Millan, J. ; Molinari, M. ; Mattia, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-57cfc98a42c9a31940159e6e7fdc404e2ee2449d6c7421d4917171922fd524313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brain computer interfaces</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Neuroplasticity</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Cincotti, F.</creatorcontrib><creatorcontrib>Pichiorri, F.</creatorcontrib><creatorcontrib>Arico, P.</creatorcontrib><creatorcontrib>Aloise, F.</creatorcontrib><creatorcontrib>Leotta, F.</creatorcontrib><creatorcontrib>de Vico Fallani, F.</creatorcontrib><creatorcontrib>del R Millan, J.</creatorcontrib><creatorcontrib>Molinari, M.</creatorcontrib><creatorcontrib>Mattia, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cincotti, F.</au><au>Pichiorri, F.</au><au>Arico, P.</au><au>Aloise, F.</au><au>Leotta, F.</au><au>de Vico Fallani, F.</au><au>del R Millan, J.</au><au>Molinari, M.</au><au>Mattia, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb</atitle><btitle>2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>EMBC</stitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><spage>4112</spage><epage>4115</epage><pages>4112-4115</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><eissn>2694-0604</eissn><isbn>1424441196</isbn><isbn>9781424441198</isbn><eisbn>9781457717871</eisbn><eisbn>1457717875</eisbn><abstract>Brain-Computer Interfaces (BCIs) process brain activity in real time, and mediate non-muscular interaction between and individual and the environment. The subserving algorithms can be used to provide a quantitative measurement of physiological or pathological cognitive processes - such as Motor Imagery (MI) - and feed it back the user. In this paper we propose the clinical application of a BCI-based rehabilitation device, to promote motor recovery after stroke. The BCI-based device and the therapy exploiting its use follow the same principles that drive classical neuromotor rehabilitation, and (i) provides the physical therapist with a monitoring instrument, to assess the patient's participation in the rehabilitative cognitive exercise; (ii) assists the patient in the practice of MI. The device was installed in the ward of a rehabilitation hospital and a group of 29 patients were involved in its testing. Among them, eight have already undergone a one month training with the device, as an add-on to the regular therapy. An improved system, which includes analysis of Electromyographic (EMG) patterns and Functional Electrical Stimulation (FES) of the arm muscles, is also under clinical evaluation. We found that the rehabilitation exercise based on BCI mediated neurofeedback mechanisms enables a better engagement of motor areas with respect to motor imagery alone and thus it can promote neuroplasticity in brain regions affected by a cerebrovascular accident. Preliminary results also suggest that the functional outcome of motor rehabilitation may be improved by the use of the proposed device.</abstract><pub>IEEE</pub><pmid>23366832</pmid><doi>10.1109/EMBC.2012.6346871</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, Vol.2012, p.4112-4115
issn 1094-687X
1558-4615
2694-0604
language eng
recordid cdi_ieee_primary_6346871
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain computer interfaces
Electroencephalography
Electromyography
Neuroplasticity
Training
Visualization
title EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EEG-based%20Brain-Computer%20Interface%20to%20support%20post-stroke%20motor%20rehabilitation%20of%20the%20upper%20limb&rft.btitle=2012%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Cincotti,%20F.&rft.date=2012-01-01&rft.volume=2012&rft.spage=4112&rft.epage=4115&rft.pages=4112-4115&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=1424441196&rft.isbn_list=9781424441198&rft_id=info:doi/10.1109/EMBC.2012.6346871&rft.eisbn=9781457717871&rft.eisbn_list=1457717875&rft_dat=%3Cproquest_6IE%3E1283725543%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-57cfc98a42c9a31940159e6e7fdc404e2ee2449d6c7421d4917171922fd524313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283725543&rft_id=info:pmid/23366832&rft_ieee_id=6346871&rfr_iscdi=true