Loading…

Sparsity-based restoration of SMOS images in the presence of outliers

Estimates of soil moisture and surface salinity are of significant importance to improve meteorological and climate prediction. The SMOS mission monitor these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry. Despite the L-band being reserved f...

Full description

Saved in:
Bibliographic Details
Main Authors: Preciozzi, J., Muse, P., Almansa, A., Durand, S., Cabot, F., Kerr, Y., Khazaal, A., Rouge, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3504
container_issue
container_start_page 3501
container_title
container_volume
creator Preciozzi, J.
Muse, P.
Almansa, A.
Durand, S.
Cabot, F.
Kerr, Y.
Khazaal, A.
Rouge, B.
description Estimates of soil moisture and surface salinity are of significant importance to improve meteorological and climate prediction. The SMOS mission monitor these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry. Despite the L-band being reserved for Earth and space exploration, SMOS images reveal large number of strong outliers, produced by illegal antennas emitting in this band. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map. The measurements are modeled as the superposition of three super-resolved components in the spatial domain: the target brightness temperature map u, an image o modeling the outliers, and Gaussian noise n. This decomposition allows to isolate each of its constituent parts, thanks to a sparsity operator that acts on o, and a bounded variation prior on u that extrapolates its spectrum promoting a non-oscillating behavior. The proposed model is interesting in itself, as it is general enough to be applied to other restoration problems. Experiments on real and synthetic data confirm the suitability of the proposed approach.
doi_str_mv 10.1109/IGARSS.2012.6350665
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6350665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6350665</ieee_id><sourcerecordid>6350665</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1355-10db0c5dd1acd4c8aeb044b1c1370fd5c47dff55fcde6e59bd96850e961f16f73</originalsourceid><addsrcrecordid>eNpNkMtuwjAURN2XVETzBWz8A6H34vi1RIgCEhVS066RY1-3rihBcbrg75uqLDqbWZzRaDSMTRCmiGAfN6v5S11PZ4CzqRISlJJXrLDaYKW0QJTGXLPRDKUoNYC4-c8U4O2FKWvVPSty_oRBBo3QYsSW9cl1OfXnsnGZAu8o923n-tQeeRt5_byrefpy75R5OvL-g_hpiNDR0y9uv_tDoi4_sLvoDpmKi4_Z29PydbEut7vVZjHflgmFlCVCaMDLEND5UHnjqIGqatCj0BCD9JUOMUoZfSBF0jbBKiOBrMKIKmoxZpO_3kRE-1M3LOvO-8sp4gdg81HN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sparsity-based restoration of SMOS images in the presence of outliers</title><source>IEEE Xplore All Conference Series</source><creator>Preciozzi, J. ; Muse, P. ; Almansa, A. ; Durand, S. ; Cabot, F. ; Kerr, Y. ; Khazaal, A. ; Rouge, B.</creator><creatorcontrib>Preciozzi, J. ; Muse, P. ; Almansa, A. ; Durand, S. ; Cabot, F. ; Kerr, Y. ; Khazaal, A. ; Rouge, B.</creatorcontrib><description>Estimates of soil moisture and surface salinity are of significant importance to improve meteorological and climate prediction. The SMOS mission monitor these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry. Despite the L-band being reserved for Earth and space exploration, SMOS images reveal large number of strong outliers, produced by illegal antennas emitting in this band. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map. The measurements are modeled as the superposition of three super-resolved components in the spatial domain: the target brightness temperature map u, an image o modeling the outliers, and Gaussian noise n. This decomposition allows to isolate each of its constituent parts, thanks to a sparsity operator that acts on o, and a bounded variation prior on u that extrapolates its spectrum promoting a non-oscillating behavior. The proposed model is interesting in itself, as it is general enough to be applied to other restoration problems. Experiments on real and synthetic data confirm the suitability of the proposed approach.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781467311601</identifier><identifier>ISBN: 146731160X</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781467311588</identifier><identifier>EISBN: 1467311588</identifier><identifier>EISBN: 9781467311595</identifier><identifier>EISBN: 1467311596</identifier><identifier>DOI: 10.1109/IGARSS.2012.6350665</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts</subject><ispartof>2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.3501-3504</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6350665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6350665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Preciozzi, J.</creatorcontrib><creatorcontrib>Muse, P.</creatorcontrib><creatorcontrib>Almansa, A.</creatorcontrib><creatorcontrib>Durand, S.</creatorcontrib><creatorcontrib>Cabot, F.</creatorcontrib><creatorcontrib>Kerr, Y.</creatorcontrib><creatorcontrib>Khazaal, A.</creatorcontrib><creatorcontrib>Rouge, B.</creatorcontrib><title>Sparsity-based restoration of SMOS images in the presence of outliers</title><title>2012 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Estimates of soil moisture and surface salinity are of significant importance to improve meteorological and climate prediction. The SMOS mission monitor these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry. Despite the L-band being reserved for Earth and space exploration, SMOS images reveal large number of strong outliers, produced by illegal antennas emitting in this band. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map. The measurements are modeled as the superposition of three super-resolved components in the spatial domain: the target brightness temperature map u, an image o modeling the outliers, and Gaussian noise n. This decomposition allows to isolate each of its constituent parts, thanks to a sparsity operator that acts on o, and a bounded variation prior on u that extrapolates its spectrum promoting a non-oscillating behavior. The proposed model is interesting in itself, as it is general enough to be applied to other restoration problems. Experiments on real and synthetic data confirm the suitability of the proposed approach.</description><subject>Abstracts</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311588</isbn><isbn>1467311588</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkMtuwjAURN2XVETzBWz8A6H34vi1RIgCEhVS066RY1-3rihBcbrg75uqLDqbWZzRaDSMTRCmiGAfN6v5S11PZ4CzqRISlJJXrLDaYKW0QJTGXLPRDKUoNYC4-c8U4O2FKWvVPSty_oRBBo3QYsSW9cl1OfXnsnGZAu8o923n-tQeeRt5_byrefpy75R5OvL-g_hpiNDR0y9uv_tDoi4_sLvoDpmKi4_Z29PydbEut7vVZjHflgmFlCVCaMDLEND5UHnjqIGqatCj0BCD9JUOMUoZfSBF0jbBKiOBrMKIKmoxZpO_3kRE-1M3LOvO-8sp4gdg81HN</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Preciozzi, J.</creator><creator>Muse, P.</creator><creator>Almansa, A.</creator><creator>Durand, S.</creator><creator>Cabot, F.</creator><creator>Kerr, Y.</creator><creator>Khazaal, A.</creator><creator>Rouge, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Sparsity-based restoration of SMOS images in the presence of outliers</title><author>Preciozzi, J. ; Muse, P. ; Almansa, A. ; Durand, S. ; Cabot, F. ; Kerr, Y. ; Khazaal, A. ; Rouge, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1355-10db0c5dd1acd4c8aeb044b1c1370fd5c47dff55fcde6e59bd96850e961f16f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abstracts</topic><toplevel>online_resources</toplevel><creatorcontrib>Preciozzi, J.</creatorcontrib><creatorcontrib>Muse, P.</creatorcontrib><creatorcontrib>Almansa, A.</creatorcontrib><creatorcontrib>Durand, S.</creatorcontrib><creatorcontrib>Cabot, F.</creatorcontrib><creatorcontrib>Kerr, Y.</creatorcontrib><creatorcontrib>Khazaal, A.</creatorcontrib><creatorcontrib>Rouge, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Preciozzi, J.</au><au>Muse, P.</au><au>Almansa, A.</au><au>Durand, S.</au><au>Cabot, F.</au><au>Kerr, Y.</au><au>Khazaal, A.</au><au>Rouge, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparsity-based restoration of SMOS images in the presence of outliers</atitle><btitle>2012 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2012-07</date><risdate>2012</risdate><spage>3501</spage><epage>3504</epage><pages>3501-3504</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781467311601</isbn><isbn>146731160X</isbn><eisbn>9781467311588</eisbn><eisbn>1467311588</eisbn><eisbn>9781467311595</eisbn><eisbn>1467311596</eisbn><abstract>Estimates of soil moisture and surface salinity are of significant importance to improve meteorological and climate prediction. The SMOS mission monitor these quantities, by measuring the brightness temperature by means of L-band aperture synthesis interferometry. Despite the L-band being reserved for Earth and space exploration, SMOS images reveal large number of strong outliers, produced by illegal antennas emitting in this band. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map. The measurements are modeled as the superposition of three super-resolved components in the spatial domain: the target brightness temperature map u, an image o modeling the outliers, and Gaussian noise n. This decomposition allows to isolate each of its constituent parts, thanks to a sparsity operator that acts on o, and a bounded variation prior on u that extrapolates its spectrum promoting a non-oscillating behavior. The proposed model is interesting in itself, as it is general enough to be applied to other restoration problems. Experiments on real and synthetic data confirm the suitability of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2012.6350665</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.3501-3504
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_6350665
source IEEE Xplore All Conference Series
subjects Abstracts
title Sparsity-based restoration of SMOS images in the presence of outliers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparsity-based%20restoration%20of%20SMOS%20images%20in%20the%20presence%20of%20outliers&rft.btitle=2012%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Preciozzi,%20J.&rft.date=2012-07&rft.spage=3501&rft.epage=3504&rft.pages=3501-3504&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781467311601&rft.isbn_list=146731160X&rft_id=info:doi/10.1109/IGARSS.2012.6350665&rft.eisbn=9781467311588&rft.eisbn_list=1467311588&rft.eisbn_list=9781467311595&rft.eisbn_list=1467311596&rft_dat=%3Cieee_CHZPO%3E6350665%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1355-10db0c5dd1acd4c8aeb044b1c1370fd5c47dff55fcde6e59bd96850e961f16f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6350665&rfr_iscdi=true