Loading…
Real-Time Traffic-Sign Recognition Using Tree Classifiers
Traffic-sign recognition (TSR) is an essential component of a driver assistance system (DAS), providing drivers with safety and precaution information. In this paper, we evaluate the performance of k-d trees, random forests, and support vector machines (SVMs) for traffic-sign classification using di...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2012-12, Vol.13 (4), p.1507-1514 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traffic-sign recognition (TSR) is an essential component of a driver assistance system (DAS), providing drivers with safety and precaution information. In this paper, we evaluate the performance of k-d trees, random forests, and support vector machines (SVMs) for traffic-sign classification using different-sized histogram-of-oriented-gradient (HOG) descriptors and distance transforms (DTs). We also use the Fisher's criterion and random forests for the feature selection to reduce the memory requirements and enhance the performance. We use the German Traffic Sign Recognition Benchmark (GTSRB) data set containing 43 classes and more than 50 000 images. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2012.2225618 |