Loading…
High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors
The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2013-09, Vol.60 (9), p.4103-4117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3 |
container_end_page | 4117 |
container_issue | 9 |
container_start_page | 4103 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 60 |
creator | Kim, Yong-Hwa Youn, Young-Woo Hwang, Don-Ha Sun, Jong-Ho Kang, Dong-Sik |
description | The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm. |
doi_str_mv | 10.1109/TIE.2012.2227912 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6355663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6355663</ieee_id><sourcerecordid>1372609775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpcFL15S9zObHG1pbUBRSj2H7WZiU9Ns3d0c-u9NTPHgaeCd5x2GB6FbSiaUkvRxnc0njFA2YYyplLIzNKJSqihNRXKORoSpJCJExJfoyvsdIVRIKkfILKvPbbQCb-s2VLbB79rpPQRweO5Dtde_4SuErS1wsDgroAlVecRTZ7-gwSsbrMNT7fBCt3XwuGpw1hStGXr91l-ji1LXHm5Oc4w-FvP1bBm9vD1ns6eXyHAmQrRRFFjCxIanidFMqJJKQajihIEqEw2GJ1KasihUSQolyk0KhAIYkCohQvMxehjuHpz9bsGHfF95A3WtG7CtzylXLCapUrJD7_-hO9u6pvuuo0SaxILRniIDZZz13kGZH1ynxB1zSvLeet5Zz3vr-cl6V7kbKhUA_OExlzKOOf8BFlR9kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349864215</pqid></control><display><type>article</type><title>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Yong-Hwa ; Youn, Young-Woo ; Hwang, Don-Ha ; Sun, Jong-Ho ; Kang, Dong-Sik</creator><creatorcontrib>Kim, Yong-Hwa ; Youn, Young-Woo ; Hwang, Don-Ha ; Sun, Jong-Ho ; Kang, Dong-Sik</creatorcontrib><description>The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2012.2227912</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Amplitude estimation ; Amplitudes ; broken rotor bar (BRB) ; current measurement ; Eigenvalues and eigenfunctions ; Estimators ; fault detection ; Fault diagnosis ; Faults ; Frequency estimation ; Harmonic analysis ; Harmonics ; Induction motors ; Modules ; Multiple signal classification ; Rotors ; signal analysis ; signal processing ; Studies ; Time frequency analysis</subject><ispartof>IEEE transactions on industrial electronics (1982), 2013-09, Vol.60 (9), p.4103-4117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</citedby><cites>FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6355663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><creatorcontrib>Youn, Young-Woo</creatorcontrib><creatorcontrib>Hwang, Don-Ha</creatorcontrib><creatorcontrib>Sun, Jong-Ho</creatorcontrib><creatorcontrib>Kang, Dong-Sik</creatorcontrib><title>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.</description><subject>Algorithms</subject><subject>Amplitude estimation</subject><subject>Amplitudes</subject><subject>broken rotor bar (BRB)</subject><subject>current measurement</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimators</subject><subject>fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Frequency estimation</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Induction motors</subject><subject>Modules</subject><subject>Multiple signal classification</subject><subject>Rotors</subject><subject>signal analysis</subject><subject>signal processing</subject><subject>Studies</subject><subject>Time frequency analysis</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFbvgpcFL15S9zObHG1pbUBRSj2H7WZiU9Ns3d0c-u9NTPHgaeCd5x2GB6FbSiaUkvRxnc0njFA2YYyplLIzNKJSqihNRXKORoSpJCJExJfoyvsdIVRIKkfILKvPbbQCb-s2VLbB79rpPQRweO5Dtde_4SuErS1wsDgroAlVecRTZ7-gwSsbrMNT7fBCt3XwuGpw1hStGXr91l-ji1LXHm5Oc4w-FvP1bBm9vD1ns6eXyHAmQrRRFFjCxIanidFMqJJKQajihIEqEw2GJ1KasihUSQolyk0KhAIYkCohQvMxehjuHpz9bsGHfF95A3WtG7CtzylXLCapUrJD7_-hO9u6pvuuo0SaxILRniIDZZz13kGZH1ynxB1zSvLeet5Zz3vr-cl6V7kbKhUA_OExlzKOOf8BFlR9kg</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Kim, Yong-Hwa</creator><creator>Youn, Young-Woo</creator><creator>Hwang, Don-Ha</creator><creator>Sun, Jong-Ho</creator><creator>Kang, Dong-Sik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130901</creationdate><title>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</title><author>Kim, Yong-Hwa ; Youn, Young-Woo ; Hwang, Don-Ha ; Sun, Jong-Ho ; Kang, Dong-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Amplitude estimation</topic><topic>Amplitudes</topic><topic>broken rotor bar (BRB)</topic><topic>current measurement</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimators</topic><topic>fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Frequency estimation</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Induction motors</topic><topic>Modules</topic><topic>Multiple signal classification</topic><topic>Rotors</topic><topic>signal analysis</topic><topic>signal processing</topic><topic>Studies</topic><topic>Time frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><creatorcontrib>Youn, Young-Woo</creatorcontrib><creatorcontrib>Hwang, Don-Ha</creatorcontrib><creatorcontrib>Sun, Jong-Ho</creatorcontrib><creatorcontrib>Kang, Dong-Sik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong-Hwa</au><au>Youn, Young-Woo</au><au>Hwang, Don-Ha</au><au>Sun, Jong-Ho</au><au>Kang, Dong-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>60</volume><issue>9</issue><spage>4103</spage><epage>4117</epage><pages>4103-4117</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2012.2227912</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2013-09, Vol.60 (9), p.4103-4117 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_6355663 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Amplitude estimation Amplitudes broken rotor bar (BRB) current measurement Eigenvalues and eigenfunctions Estimators fault detection Fault diagnosis Faults Frequency estimation Harmonic analysis Harmonics Induction motors Modules Multiple signal classification Rotors signal analysis signal processing Studies Time frequency analysis |
title | High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Parameter%20Estimation%20Method%20to%20Identify%20Broken%20Rotor%20Bar%20Faults%20in%20Induction%20Motors&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Kim,%20Yong-Hwa&rft.date=2013-09-01&rft.volume=60&rft.issue=9&rft.spage=4103&rft.epage=4117&rft.pages=4103-4117&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2012.2227912&rft_dat=%3Cproquest_ieee_%3E1372609775%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349864215&rft_id=info:pmid/&rft_ieee_id=6355663&rfr_iscdi=true |