Loading…

High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors

The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2013-09, Vol.60 (9), p.4103-4117
Main Authors: Kim, Yong-Hwa, Youn, Young-Woo, Hwang, Don-Ha, Sun, Jong-Ho, Kang, Dong-Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3
cites cdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3
container_end_page 4117
container_issue 9
container_start_page 4103
container_title IEEE transactions on industrial electronics (1982)
container_volume 60
creator Kim, Yong-Hwa
Youn, Young-Woo
Hwang, Don-Ha
Sun, Jong-Ho
Kang, Dong-Sik
description The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.
doi_str_mv 10.1109/TIE.2012.2227912
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6355663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6355663</ieee_id><sourcerecordid>1372609775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpcFL15S9zObHG1pbUBRSj2H7WZiU9Ns3d0c-u9NTPHgaeCd5x2GB6FbSiaUkvRxnc0njFA2YYyplLIzNKJSqihNRXKORoSpJCJExJfoyvsdIVRIKkfILKvPbbQCb-s2VLbB79rpPQRweO5Dtde_4SuErS1wsDgroAlVecRTZ7-gwSsbrMNT7fBCt3XwuGpw1hStGXr91l-ji1LXHm5Oc4w-FvP1bBm9vD1ns6eXyHAmQrRRFFjCxIanidFMqJJKQajihIEqEw2GJ1KasihUSQolyk0KhAIYkCohQvMxehjuHpz9bsGHfF95A3WtG7CtzylXLCapUrJD7_-hO9u6pvuuo0SaxILRniIDZZz13kGZH1ynxB1zSvLeet5Zz3vr-cl6V7kbKhUA_OExlzKOOf8BFlR9kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349864215</pqid></control><display><type>article</type><title>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kim, Yong-Hwa ; Youn, Young-Woo ; Hwang, Don-Ha ; Sun, Jong-Ho ; Kang, Dong-Sik</creator><creatorcontrib>Kim, Yong-Hwa ; Youn, Young-Woo ; Hwang, Don-Ha ; Sun, Jong-Ho ; Kang, Dong-Sik</creatorcontrib><description>The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2012.2227912</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Amplitude estimation ; Amplitudes ; broken rotor bar (BRB) ; current measurement ; Eigenvalues and eigenfunctions ; Estimators ; fault detection ; Fault diagnosis ; Faults ; Frequency estimation ; Harmonic analysis ; Harmonics ; Induction motors ; Modules ; Multiple signal classification ; Rotors ; signal analysis ; signal processing ; Studies ; Time frequency analysis</subject><ispartof>IEEE transactions on industrial electronics (1982), 2013-09, Vol.60 (9), p.4103-4117</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</citedby><cites>FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6355663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><creatorcontrib>Youn, Young-Woo</creatorcontrib><creatorcontrib>Hwang, Don-Ha</creatorcontrib><creatorcontrib>Sun, Jong-Ho</creatorcontrib><creatorcontrib>Kang, Dong-Sik</creatorcontrib><title>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.</description><subject>Algorithms</subject><subject>Amplitude estimation</subject><subject>Amplitudes</subject><subject>broken rotor bar (BRB)</subject><subject>current measurement</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimators</subject><subject>fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Frequency estimation</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Induction motors</subject><subject>Modules</subject><subject>Multiple signal classification</subject><subject>Rotors</subject><subject>signal analysis</subject><subject>signal processing</subject><subject>Studies</subject><subject>Time frequency analysis</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFbvgpcFL15S9zObHG1pbUBRSj2H7WZiU9Ns3d0c-u9NTPHgaeCd5x2GB6FbSiaUkvRxnc0njFA2YYyplLIzNKJSqihNRXKORoSpJCJExJfoyvsdIVRIKkfILKvPbbQCb-s2VLbB79rpPQRweO5Dtde_4SuErS1wsDgroAlVecRTZ7-gwSsbrMNT7fBCt3XwuGpw1hStGXr91l-ji1LXHm5Oc4w-FvP1bBm9vD1ns6eXyHAmQrRRFFjCxIanidFMqJJKQajihIEqEw2GJ1KasihUSQolyk0KhAIYkCohQvMxehjuHpz9bsGHfF95A3WtG7CtzylXLCapUrJD7_-hO9u6pvuuo0SaxILRniIDZZz13kGZH1ynxB1zSvLeet5Zz3vr-cl6V7kbKhUA_OExlzKOOf8BFlR9kg</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Kim, Yong-Hwa</creator><creator>Youn, Young-Woo</creator><creator>Hwang, Don-Ha</creator><creator>Sun, Jong-Ho</creator><creator>Kang, Dong-Sik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130901</creationdate><title>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</title><author>Kim, Yong-Hwa ; Youn, Young-Woo ; Hwang, Don-Ha ; Sun, Jong-Ho ; Kang, Dong-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Amplitude estimation</topic><topic>Amplitudes</topic><topic>broken rotor bar (BRB)</topic><topic>current measurement</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimators</topic><topic>fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Frequency estimation</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Induction motors</topic><topic>Modules</topic><topic>Multiple signal classification</topic><topic>Rotors</topic><topic>signal analysis</topic><topic>signal processing</topic><topic>Studies</topic><topic>Time frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong-Hwa</creatorcontrib><creatorcontrib>Youn, Young-Woo</creatorcontrib><creatorcontrib>Hwang, Don-Ha</creatorcontrib><creatorcontrib>Sun, Jong-Ho</creatorcontrib><creatorcontrib>Kang, Dong-Sik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong-Hwa</au><au>Youn, Young-Woo</au><au>Hwang, Don-Ha</au><au>Sun, Jong-Ho</au><au>Kang, Dong-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>60</volume><issue>9</issue><spage>4103</spage><epage>4117</epage><pages>4103-4117</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The classical multiple signal classification (MUSIC) method has been widely used in induction machine fault detection and diagnosis. This method can extract meaningful frequencies but cannot give accurate amplitude information of fault harmonics. In this paper, we propose a new frequency analysis of stator current to estimate fault-sensitive frequencies and their amplitudes for broken rotor bars (BRBs). The proposed method employs a frequency estimator, an amplitude estimator, and a fault decision module. The frequency estimator is implemented by a zoom technique and a high-resolution analysis technique known as the estimation of signal parameters via rotational invariance techniques, which can extract frequencies accurately. For the amplitude estimator, a least squares estimator is derived to obtain amplitudes of fault harmonics, without frequency leakage. In the fault decision module, the fault diagnosis index from the amplitude estimator is used depending on the load conditions of the induction motors. The fault index and corresponding threshold are optimized by using the false alarm and detection probabilities. Experimental results obtained from induction motors show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to the zoom-based MUSIC algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2012.2227912</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2013-09, Vol.60 (9), p.4103-4117
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_6355663
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Amplitude estimation
Amplitudes
broken rotor bar (BRB)
current measurement
Eigenvalues and eigenfunctions
Estimators
fault detection
Fault diagnosis
Faults
Frequency estimation
Harmonic analysis
Harmonics
Induction motors
Modules
Multiple signal classification
Rotors
signal analysis
signal processing
Studies
Time frequency analysis
title High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Parameter%20Estimation%20Method%20to%20Identify%20Broken%20Rotor%20Bar%20Faults%20in%20Induction%20Motors&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Kim,%20Yong-Hwa&rft.date=2013-09-01&rft.volume=60&rft.issue=9&rft.spage=4103&rft.epage=4117&rft.pages=4103-4117&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2012.2227912&rft_dat=%3Cproquest_ieee_%3E1372609775%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-b71e2824b398ca247f154017302e7f8aec3855cfdd7f0d74fb9e01eece57804a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349864215&rft_id=info:pmid/&rft_ieee_id=6355663&rfr_iscdi=true