Loading…
Chinese spam filtering based on online active learning methods
In this paper, new active learning methods are proposed to filter Chinese spam. It is time-consuming and expensive to label the spam emails in the large datasets. Active learning methods can conspicuously reduce labeling cost by identifying informative examples and speed up online Logistic Regressio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, new active learning methods are proposed to filter Chinese spam. It is time-consuming and expensive to label the spam emails in the large datasets. Active learning methods can conspicuously reduce labeling cost by identifying informative examples and speed up online Logistic Regression filter. The experiments illustrate that our methods not only decrease the number of label requests, but also improve the classification performance of spam filtering. |
---|---|
DOI: | 10.1109/IFOST.2012.6357637 |