Loading…
Ferrimagnetic Nonlinear Transmission Lines as High-Power Microwave Sources
Ferrimagnetic nonlinear transmission lines (NLTLs) have the potential to fill a high-power microwave niche where compact cost-effective sources are lacking. NLTLs utilize nonlinear ferrimagnetic properties and magnetization dynamics to provide ultrafast pulse rise times (100 ps or less) and microwav...
Saved in:
Published in: | IEEE transactions on plasma science 2013-01, Vol.41 (1), p.232-237 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ferrimagnetic nonlinear transmission lines (NLTLs) have the potential to fill a high-power microwave niche where compact cost-effective sources are lacking. NLTLs utilize nonlinear ferrimagnetic properties and magnetization dynamics to provide ultrafast pulse rise times (100 ps or less) and microwave signals with peak power ranging from kilowatts to hundreds of megawatts. The frequency of operation has been shown to range from 900 MHz up to 5 GHz depending on geometry and external magnetic fields. NLTLs, theoretically, can be pulsed to tens of kilohertz with little to no variance in microwave signal between shots. This paper covers recent advances in ferrimagnetic-based NLTLs, specifically effects of applied and bias magnetic fields on peak power and frequency, as well as temperature dependence. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2012.2226169 |