Loading…

Low complexity precoding for large millimeter wave MIMO systems

Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data str...

Full description

Saved in:
Bibliographic Details
Main Authors: Ayach, O. E., Heath, R. W., Abu-Surra, S., Rajagopal, S., Zhouyue Pi
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83
cites
container_end_page 3729
container_issue
container_start_page 3724
container_title
container_volume
creator Ayach, O. E.
Heath, R. W.
Abu-Surra, S.
Rajagopal, S.
Zhouyue Pi
description Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.
doi_str_mv 10.1109/ICC.2012.6363634
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6363634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6363634</ieee_id><sourcerecordid>6363634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83</originalsourceid><addsrcrecordid>eNpVUMlqwzAUVDdomuZe6EU_YFeLtZ1KMV0MDrm05yArT0HFro1kmvrv69BcyhzmMcMMvEHojpKcUmIeqrLMGaEsl_yI4gytjNK0EEoxIrg8RwtquM6o1vzin8fM5ewJQTIuibpGNyl9kqPM6QI91v0Bu74bWvgJ44SHCK7fha899n3ErY17wF1o29DBCBEf7DfgdbXe4DSlEbp0i668bROsTrxEHy_P7-VbVm9eq_KpzhxjbMyAWaDaM-W8M4pJba23mkoQhRdamPmDRilqlDXOScHn09GisWYO7nSj-RLd__UGANgOMXQ2TtvTFvwXa7RNgw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low complexity precoding for large millimeter wave MIMO systems</title><source>IEEE Xplore All Conference Series</source><creator>Ayach, O. E. ; Heath, R. W. ; Abu-Surra, S. ; Rajagopal, S. ; Zhouyue Pi</creator><creatorcontrib>Ayach, O. E. ; Heath, R. W. ; Abu-Surra, S. ; Rajagopal, S. ; Zhouyue Pi</creatorcontrib><description>Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 9781457720529</identifier><identifier>ISBN: 1457720523</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781457720536</identifier><identifier>EISBN: 1457720531</identifier><identifier>EISBN: 1457720515</identifier><identifier>EISBN: 9781457720512</identifier><identifier>DOI: 10.1109/ICC.2012.6363634</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna arrays ; Approximation algorithms ; Array signal processing ; Baseband ; Radio frequency ; Receivers ; Vectors</subject><ispartof>2012 IEEE International Conference on Communications (ICC), 2012, p.3724-3729</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6363634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6363634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ayach, O. E.</creatorcontrib><creatorcontrib>Heath, R. W.</creatorcontrib><creatorcontrib>Abu-Surra, S.</creatorcontrib><creatorcontrib>Rajagopal, S.</creatorcontrib><creatorcontrib>Zhouyue Pi</creatorcontrib><title>Low complexity precoding for large millimeter wave MIMO systems</title><title>2012 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.</description><subject>Antenna arrays</subject><subject>Approximation algorithms</subject><subject>Array signal processing</subject><subject>Baseband</subject><subject>Radio frequency</subject><subject>Receivers</subject><subject>Vectors</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>9781457720529</isbn><isbn>1457720523</isbn><isbn>9781457720536</isbn><isbn>1457720531</isbn><isbn>1457720515</isbn><isbn>9781457720512</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMlqwzAUVDdomuZe6EU_YFeLtZ1KMV0MDrm05yArT0HFro1kmvrv69BcyhzmMcMMvEHojpKcUmIeqrLMGaEsl_yI4gytjNK0EEoxIrg8RwtquM6o1vzin8fM5ewJQTIuibpGNyl9kqPM6QI91v0Bu74bWvgJ44SHCK7fha899n3ErY17wF1o29DBCBEf7DfgdbXe4DSlEbp0i668bROsTrxEHy_P7-VbVm9eq_KpzhxjbMyAWaDaM-W8M4pJba23mkoQhRdamPmDRilqlDXOScHn09GisWYO7nSj-RLd__UGANgOMXQ2TtvTFvwXa7RNgw</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Ayach, O. E.</creator><creator>Heath, R. W.</creator><creator>Abu-Surra, S.</creator><creator>Rajagopal, S.</creator><creator>Zhouyue Pi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Low complexity precoding for large millimeter wave MIMO systems</title><author>Ayach, O. E. ; Heath, R. W. ; Abu-Surra, S. ; Rajagopal, S. ; Zhouyue Pi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antenna arrays</topic><topic>Approximation algorithms</topic><topic>Array signal processing</topic><topic>Baseband</topic><topic>Radio frequency</topic><topic>Receivers</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayach, O. E.</creatorcontrib><creatorcontrib>Heath, R. W.</creatorcontrib><creatorcontrib>Abu-Surra, S.</creatorcontrib><creatorcontrib>Rajagopal, S.</creatorcontrib><creatorcontrib>Zhouyue Pi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayach, O. E.</au><au>Heath, R. W.</au><au>Abu-Surra, S.</au><au>Rajagopal, S.</au><au>Zhouyue Pi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low complexity precoding for large millimeter wave MIMO systems</atitle><btitle>2012 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2012-06</date><risdate>2012</risdate><spage>3724</spage><epage>3729</epage><pages>3724-3729</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>9781457720529</isbn><isbn>1457720523</isbn><eisbn>9781457720536</eisbn><eisbn>1457720531</eisbn><eisbn>1457720515</eisbn><eisbn>9781457720512</eisbn><abstract>Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2012.6363634</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-3607
ispartof 2012 IEEE International Conference on Communications (ICC), 2012, p.3724-3729
issn 1550-3607
1938-1883
language eng
recordid cdi_ieee_primary_6363634
source IEEE Xplore All Conference Series
subjects Antenna arrays
Approximation algorithms
Array signal processing
Baseband
Radio frequency
Receivers
Vectors
title Low complexity precoding for large millimeter wave MIMO systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20complexity%20precoding%20for%20large%20millimeter%20wave%20MIMO%20systems&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Ayach,%20O.%20E.&rft.date=2012-06&rft.spage=3724&rft.epage=3729&rft.pages=3724-3729&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=9781457720529&rft.isbn_list=1457720523&rft_id=info:doi/10.1109/ICC.2012.6363634&rft.eisbn=9781457720536&rft.eisbn_list=1457720531&rft.eisbn_list=1457720515&rft.eisbn_list=9781457720512&rft_dat=%3Cieee_CHZPO%3E6363634%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6363634&rfr_iscdi=true