Loading…
Low complexity precoding for large millimeter wave MIMO systems
Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data str...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83 |
---|---|
cites | |
container_end_page | 3729 |
container_issue | |
container_start_page | 3724 |
container_title | |
container_volume | |
creator | Ayach, O. E. Heath, R. W. Abu-Surra, S. Rajagopal, S. Zhouyue Pi |
description | Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity. |
doi_str_mv | 10.1109/ICC.2012.6363634 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6363634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6363634</ieee_id><sourcerecordid>6363634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83</originalsourceid><addsrcrecordid>eNpVUMlqwzAUVDdomuZe6EU_YFeLtZ1KMV0MDrm05yArT0HFro1kmvrv69BcyhzmMcMMvEHojpKcUmIeqrLMGaEsl_yI4gytjNK0EEoxIrg8RwtquM6o1vzin8fM5ewJQTIuibpGNyl9kqPM6QI91v0Bu74bWvgJ44SHCK7fha899n3ErY17wF1o29DBCBEf7DfgdbXe4DSlEbp0i668bROsTrxEHy_P7-VbVm9eq_KpzhxjbMyAWaDaM-W8M4pJba23mkoQhRdamPmDRilqlDXOScHn09GisWYO7nSj-RLd__UGANgOMXQ2TtvTFvwXa7RNgw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low complexity precoding for large millimeter wave MIMO systems</title><source>IEEE Xplore All Conference Series</source><creator>Ayach, O. E. ; Heath, R. W. ; Abu-Surra, S. ; Rajagopal, S. ; Zhouyue Pi</creator><creatorcontrib>Ayach, O. E. ; Heath, R. W. ; Abu-Surra, S. ; Rajagopal, S. ; Zhouyue Pi</creatorcontrib><description>Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.</description><identifier>ISSN: 1550-3607</identifier><identifier>ISBN: 9781457720529</identifier><identifier>ISBN: 1457720523</identifier><identifier>EISSN: 1938-1883</identifier><identifier>EISBN: 9781457720536</identifier><identifier>EISBN: 1457720531</identifier><identifier>EISBN: 1457720515</identifier><identifier>EISBN: 9781457720512</identifier><identifier>DOI: 10.1109/ICC.2012.6363634</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antenna arrays ; Approximation algorithms ; Array signal processing ; Baseband ; Radio frequency ; Receivers ; Vectors</subject><ispartof>2012 IEEE International Conference on Communications (ICC), 2012, p.3724-3729</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6363634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6363634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ayach, O. E.</creatorcontrib><creatorcontrib>Heath, R. W.</creatorcontrib><creatorcontrib>Abu-Surra, S.</creatorcontrib><creatorcontrib>Rajagopal, S.</creatorcontrib><creatorcontrib>Zhouyue Pi</creatorcontrib><title>Low complexity precoding for large millimeter wave MIMO systems</title><title>2012 IEEE International Conference on Communications (ICC)</title><addtitle>ICC</addtitle><description>Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.</description><subject>Antenna arrays</subject><subject>Approximation algorithms</subject><subject>Array signal processing</subject><subject>Baseband</subject><subject>Radio frequency</subject><subject>Receivers</subject><subject>Vectors</subject><issn>1550-3607</issn><issn>1938-1883</issn><isbn>9781457720529</isbn><isbn>1457720523</isbn><isbn>9781457720536</isbn><isbn>1457720531</isbn><isbn>1457720515</isbn><isbn>9781457720512</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVUMlqwzAUVDdomuZe6EU_YFeLtZ1KMV0MDrm05yArT0HFro1kmvrv69BcyhzmMcMMvEHojpKcUmIeqrLMGaEsl_yI4gytjNK0EEoxIrg8RwtquM6o1vzin8fM5ewJQTIuibpGNyl9kqPM6QI91v0Bu74bWvgJ44SHCK7fha899n3ErY17wF1o29DBCBEf7DfgdbXe4DSlEbp0i668bROsTrxEHy_P7-VbVm9eq_KpzhxjbMyAWaDaM-W8M4pJba23mkoQhRdamPmDRilqlDXOScHn09GisWYO7nSj-RLd__UGANgOMXQ2TtvTFvwXa7RNgw</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Ayach, O. E.</creator><creator>Heath, R. W.</creator><creator>Abu-Surra, S.</creator><creator>Rajagopal, S.</creator><creator>Zhouyue Pi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Low complexity precoding for large millimeter wave MIMO systems</title><author>Ayach, O. E. ; Heath, R. W. ; Abu-Surra, S. ; Rajagopal, S. ; Zhouyue Pi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antenna arrays</topic><topic>Approximation algorithms</topic><topic>Array signal processing</topic><topic>Baseband</topic><topic>Radio frequency</topic><topic>Receivers</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayach, O. E.</creatorcontrib><creatorcontrib>Heath, R. W.</creatorcontrib><creatorcontrib>Abu-Surra, S.</creatorcontrib><creatorcontrib>Rajagopal, S.</creatorcontrib><creatorcontrib>Zhouyue Pi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ayach, O. E.</au><au>Heath, R. W.</au><au>Abu-Surra, S.</au><au>Rajagopal, S.</au><au>Zhouyue Pi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low complexity precoding for large millimeter wave MIMO systems</atitle><btitle>2012 IEEE International Conference on Communications (ICC)</btitle><stitle>ICC</stitle><date>2012-06</date><risdate>2012</risdate><spage>3724</spage><epage>3729</epage><pages>3724-3729</pages><issn>1550-3607</issn><eissn>1938-1883</eissn><isbn>9781457720529</isbn><isbn>1457720523</isbn><eisbn>9781457720536</eisbn><eisbn>1457720531</eisbn><eisbn>1457720515</eisbn><eisbn>9781457720512</eisbn><abstract>Millimeter wave (mmWave) systems must overcome heavy signal attenuation to support high-throughput wireless communication links. The small wavelength in mmWave systems enables beamforming using large antenna arrays to combat path loss with directional transmission. Beamforming with multiple data streams, known as precoding, can be used to achieve even higher performance. Both beamforming and precoding are done at baseband in traditional microwave systems. In mmWave systems, however, the high cost of mixed-signal and radio frequency chains (RF) makes operating in the passband and analog domains attractive. This hardware limitation places additional constraints on precoder design. In this paper, we consider single user beamforming and precoding in mmWave systems with large arrays. We exploit the structure of mmWave channels to formulate the precoder design problem as a sparsity constrained least squares problem. Using the principle of basis pursuit, we develop a precoding algorithm that approximates the optimal unconstrained precoder using a low dimensional basis representation that can be efficiently implemented in RF hardware. We present numerical results on the performance of the proposed algorithm and show that it allows mmWave systems to approach waterfilling capacity.</abstract><pub>IEEE</pub><doi>10.1109/ICC.2012.6363634</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-3607 |
ispartof | 2012 IEEE International Conference on Communications (ICC), 2012, p.3724-3729 |
issn | 1550-3607 1938-1883 |
language | eng |
recordid | cdi_ieee_primary_6363634 |
source | IEEE Xplore All Conference Series |
subjects | Antenna arrays Approximation algorithms Array signal processing Baseband Radio frequency Receivers Vectors |
title | Low complexity precoding for large millimeter wave MIMO systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20complexity%20precoding%20for%20large%20millimeter%20wave%20MIMO%20systems&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Communications%20(ICC)&rft.au=Ayach,%20O.%20E.&rft.date=2012-06&rft.spage=3724&rft.epage=3729&rft.pages=3724-3729&rft.issn=1550-3607&rft.eissn=1938-1883&rft.isbn=9781457720529&rft.isbn_list=1457720523&rft_id=info:doi/10.1109/ICC.2012.6363634&rft.eisbn=9781457720536&rft.eisbn_list=1457720531&rft.eisbn_list=1457720515&rft.eisbn_list=9781457720512&rft_dat=%3Cieee_CHZPO%3E6363634%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-e2ae18f27cfc97268aafa816e54f5859053b77197a9cc653719c14ba9e2ad8b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6363634&rfr_iscdi=true |