Loading…
Using a distance metric on genetic programs to understand genetic operators
I describe a distance metric called "edit" distance which quantifies the syntactic difference between two genetic programs. In the context of one specific problem, the 6 bit multiplexor, I use the metric to analyze the amount of new material introduced by different crossover operators, the...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4097 vol.5 |
container_issue | |
container_start_page | 4092 |
container_title | |
container_volume | 5 |
creator | O'Reilly, U.-M. |
description | I describe a distance metric called "edit" distance which quantifies the syntactic difference between two genetic programs. In the context of one specific problem, the 6 bit multiplexor, I use the metric to analyze the amount of new material introduced by different crossover operators, the difference among the best individuals of a population and the difference among the best individuals and the rest of the population. The relationships between these data and run performance are imprecise but they are sufficiently interesting to encourage further investigation into the use of edit distance. |
doi_str_mv | 10.1109/ICSMC.1997.637337 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_637337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>637337</ieee_id><sourcerecordid>637337</sourcerecordid><originalsourceid>FETCH-ieee_primary_6373373</originalsourceid><addsrcrecordid>eNp9jsGKwjAURR-jA1adD9BVfqD1JbGNXRdFGWalgjsJ9k3JME1KEhf-vYri0tW5cO7iAEw4ZpxjOdtU258q42WpskIqKdUHJCJXKuVFnvdgiGqBco655H1IOBYiLYU4DGAYwh-iwDlfJPC9D8Y2TLPahKjtiVhL0ZsTc5Y1ZCneZudd43UbWHTsbGvy92f90q4jr6PzYQyfv_o_0NeTI5iulrtqnRoiOnbetNpfjo9W-VZeARd9QDc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using a distance metric on genetic programs to understand genetic operators</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>O'Reilly, U.-M.</creator><creatorcontrib>O'Reilly, U.-M.</creatorcontrib><description>I describe a distance metric called "edit" distance which quantifies the syntactic difference between two genetic programs. In the context of one specific problem, the 6 bit multiplexor, I use the metric to analyze the amount of new material introduced by different crossover operators, the difference among the best individuals of a population and the difference among the best individuals and the rest of the population. The relationships between these data and run performance are imprecise but they are sufficiently interesting to encourage further investigation into the use of edit distance.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780340531</identifier><identifier>ISBN: 9780780340534</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.1997.637337</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Genetic programming ; Information analysis ; Performance analysis ; Sampling methods</subject><ispartof>1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 1997, Vol.5, p.4092-4097 vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/637337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/637337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>O'Reilly, U.-M.</creatorcontrib><title>Using a distance metric on genetic programs to understand genetic operators</title><title>1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation</title><addtitle>ICSMC</addtitle><description>I describe a distance metric called "edit" distance which quantifies the syntactic difference between two genetic programs. In the context of one specific problem, the 6 bit multiplexor, I use the metric to analyze the amount of new material introduced by different crossover operators, the difference among the best individuals of a population and the difference among the best individuals and the rest of the population. The relationships between these data and run performance are imprecise but they are sufficiently interesting to encourage further investigation into the use of edit distance.</description><subject>Artificial intelligence</subject><subject>Genetic programming</subject><subject>Information analysis</subject><subject>Performance analysis</subject><subject>Sampling methods</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780340531</isbn><isbn>9780780340534</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jsGKwjAURR-jA1adD9BVfqD1JbGNXRdFGWalgjsJ9k3JME1KEhf-vYri0tW5cO7iAEw4ZpxjOdtU258q42WpskIqKdUHJCJXKuVFnvdgiGqBco655H1IOBYiLYU4DGAYwh-iwDlfJPC9D8Y2TLPahKjtiVhL0ZsTc5Y1ZCneZudd43UbWHTsbGvy92f90q4jr6PzYQyfv_o_0NeTI5iulrtqnRoiOnbetNpfjo9W-VZeARd9QDc</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>O'Reilly, U.-M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Using a distance metric on genetic programs to understand genetic operators</title><author>O'Reilly, U.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6373373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Artificial intelligence</topic><topic>Genetic programming</topic><topic>Information analysis</topic><topic>Performance analysis</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Reilly, U.-M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>O'Reilly, U.-M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using a distance metric on genetic programs to understand genetic operators</atitle><btitle>1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation</btitle><stitle>ICSMC</stitle><date>1997</date><risdate>1997</risdate><volume>5</volume><spage>4092</spage><epage>4097 vol.5</epage><pages>4092-4097 vol.5</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780340531</isbn><isbn>9780780340534</isbn><abstract>I describe a distance metric called "edit" distance which quantifies the syntactic difference between two genetic programs. In the context of one specific problem, the 6 bit multiplexor, I use the metric to analyze the amount of new material introduced by different crossover operators, the difference among the best individuals of a population and the difference among the best individuals and the rest of the population. The relationships between these data and run performance are imprecise but they are sufficiently interesting to encourage further investigation into the use of edit distance.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.1997.637337</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 1997, Vol.5, p.4092-4097 vol.5 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_637337 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Genetic programming Information analysis Performance analysis Sampling methods |
title | Using a distance metric on genetic programs to understand genetic operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20a%20distance%20metric%20on%20genetic%20programs%20to%20understand%20genetic%20operators&rft.btitle=1997%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics.%20Computational%20Cybernetics%20and%20Simulation&rft.au=O'Reilly,%20U.-M.&rft.date=1997&rft.volume=5&rft.spage=4092&rft.epage=4097%20vol.5&rft.pages=4092-4097%20vol.5&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780340531&rft.isbn_list=9780780340534&rft_id=info:doi/10.1109/ICSMC.1997.637337&rft_dat=%3Cieee_6IE%3E637337%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_6373373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=637337&rfr_iscdi=true |