Loading…

Temporal pattern recognition via temporal networks of temporal neurons

We show that real valued continuous functions can be recognized in a reliable way, with good generalization ability using an adapted version of the Liquid State Machine (LSM) that receives direct real valued input. Furthermore this system works without the necessity of preliminary extraction of sign...

Full description

Saved in:
Bibliographic Details
Main Authors: Frid, Alex, Hazan, H., Manevitz, L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Frid, Alex
Hazan, H.
Manevitz, L.
description We show that real valued continuous functions can be recognized in a reliable way, with good generalization ability using an adapted version of the Liquid State Machine (LSM) that receives direct real valued input. Furthermore this system works without the necessity of preliminary extraction of signal processing features. This avoids the necessity of discretization and encoding that has plagued earlier attempts on this process. We show this is effective on a simulated signal designed to have the properties of a physical trace of human speech. The main changes to the basic liquid state machine paradigm are (i) external stimulation to neurons by normalized real values and (ii) adaptation of the integrate and fire neurons in the liquid to have a history dependent sliding threshold (iii) topological constraints on the network connectivity.
doi_str_mv 10.1109/EEEI.2012.6377010
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6377010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6377010</ieee_id><sourcerecordid>6377010</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ca9397429c56714ef134329c96a8068d59670a693233d4c62d735c37b0a1c7763</originalsourceid><addsrcrecordid>eNpNT1FLwzAYjMhAnf0B4kv_QOuXfGm-5lFG5wYDX_o-YpqO6NaUNCr-ewtu4NNxx91xx9gDh5Jz0E9N02xLAVyUComAwxW741IRSlWDuGaZpvrCRXXDsml6B4A5q2rUt2zdutMYojnmo0nJxSGPzobD4JMPQ_7lTZ4uhsGl7xA_pjz0_8XPGIbpni16c5xcdsYla9dNu9oUu9eX7ep5V3gNqbBGoyYptK0Ucel6jhJnppWp5z1dpRWBURoFYietEh1hZZHewHBLpHDJHv9qvXNuP0Z_MvFnf36Ov8m1S98</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Temporal pattern recognition via temporal networks of temporal neurons</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Frid, Alex ; Hazan, H. ; Manevitz, L.</creator><creatorcontrib>Frid, Alex ; Hazan, H. ; Manevitz, L.</creatorcontrib><description>We show that real valued continuous functions can be recognized in a reliable way, with good generalization ability using an adapted version of the Liquid State Machine (LSM) that receives direct real valued input. Furthermore this system works without the necessity of preliminary extraction of signal processing features. This avoids the necessity of discretization and encoding that has plagued earlier attempts on this process. We show this is effective on a simulated signal designed to have the properties of a physical trace of human speech. The main changes to the basic liquid state machine paradigm are (i) external stimulation to neurons by normalized real values and (ii) adaptation of the integrate and fire neurons in the liquid to have a history dependent sliding threshold (iii) topological constraints on the network connectivity.</description><identifier>ISBN: 9781467346825</identifier><identifier>ISBN: 1467346829</identifier><identifier>EISBN: 1467346802</identifier><identifier>EISBN: 9781467346801</identifier><identifier>EISBN: 9781467346818</identifier><identifier>EISBN: 1467346810</identifier><identifier>DOI: 10.1109/EEEI.2012.6377010</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Classification algorithms ; Encoding ; Feature extraction ; Fires ; Firing ; Liquid State Machine (LSM) ; Liquids ; Neurons ; Signal Processing ; Temporal Networks</subject><ispartof>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6377010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6377010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Frid, Alex</creatorcontrib><creatorcontrib>Hazan, H.</creatorcontrib><creatorcontrib>Manevitz, L.</creatorcontrib><title>Temporal pattern recognition via temporal networks of temporal neurons</title><title>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel</title><addtitle>EEEI</addtitle><description>We show that real valued continuous functions can be recognized in a reliable way, with good generalization ability using an adapted version of the Liquid State Machine (LSM) that receives direct real valued input. Furthermore this system works without the necessity of preliminary extraction of signal processing features. This avoids the necessity of discretization and encoding that has plagued earlier attempts on this process. We show this is effective on a simulated signal designed to have the properties of a physical trace of human speech. The main changes to the basic liquid state machine paradigm are (i) external stimulation to neurons by normalized real values and (ii) adaptation of the integrate and fire neurons in the liquid to have a history dependent sliding threshold (iii) topological constraints on the network connectivity.</description><subject>Classification</subject><subject>Classification algorithms</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Fires</subject><subject>Firing</subject><subject>Liquid State Machine (LSM)</subject><subject>Liquids</subject><subject>Neurons</subject><subject>Signal Processing</subject><subject>Temporal Networks</subject><isbn>9781467346825</isbn><isbn>1467346829</isbn><isbn>1467346802</isbn><isbn>9781467346801</isbn><isbn>9781467346818</isbn><isbn>1467346810</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNT1FLwzAYjMhAnf0B4kv_QOuXfGm-5lFG5wYDX_o-YpqO6NaUNCr-ewtu4NNxx91xx9gDh5Jz0E9N02xLAVyUComAwxW741IRSlWDuGaZpvrCRXXDsml6B4A5q2rUt2zdutMYojnmo0nJxSGPzobD4JMPQ_7lTZ4uhsGl7xA_pjz0_8XPGIbpni16c5xcdsYla9dNu9oUu9eX7ep5V3gNqbBGoyYptK0Ucel6jhJnppWp5z1dpRWBURoFYietEh1hZZHewHBLpHDJHv9qvXNuP0Z_MvFnf36Ov8m1S98</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Frid, Alex</creator><creator>Hazan, H.</creator><creator>Manevitz, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Temporal pattern recognition via temporal networks of temporal neurons</title><author>Frid, Alex ; Hazan, H. ; Manevitz, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ca9397429c56714ef134329c96a8068d59670a693233d4c62d735c37b0a1c7763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Classification algorithms</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Fires</topic><topic>Firing</topic><topic>Liquid State Machine (LSM)</topic><topic>Liquids</topic><topic>Neurons</topic><topic>Signal Processing</topic><topic>Temporal Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Frid, Alex</creatorcontrib><creatorcontrib>Hazan, H.</creatorcontrib><creatorcontrib>Manevitz, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Frid, Alex</au><au>Hazan, H.</au><au>Manevitz, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Temporal pattern recognition via temporal networks of temporal neurons</atitle><btitle>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel</btitle><stitle>EEEI</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467346825</isbn><isbn>1467346829</isbn><eisbn>1467346802</eisbn><eisbn>9781467346801</eisbn><eisbn>9781467346818</eisbn><eisbn>1467346810</eisbn><abstract>We show that real valued continuous functions can be recognized in a reliable way, with good generalization ability using an adapted version of the Liquid State Machine (LSM) that receives direct real valued input. Furthermore this system works without the necessity of preliminary extraction of signal processing features. This avoids the necessity of discretization and encoding that has plagued earlier attempts on this process. We show this is effective on a simulated signal designed to have the properties of a physical trace of human speech. The main changes to the basic liquid state machine paradigm are (i) external stimulation to neurons by normalized real values and (ii) adaptation of the integrate and fire neurons in the liquid to have a history dependent sliding threshold (iii) topological constraints on the network connectivity.</abstract><pub>IEEE</pub><doi>10.1109/EEEI.2012.6377010</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467346825
ispartof 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, p.1-4
issn
language eng
recordid cdi_ieee_primary_6377010
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification
Classification algorithms
Encoding
Feature extraction
Fires
Firing
Liquid State Machine (LSM)
Liquids
Neurons
Signal Processing
Temporal Networks
title Temporal pattern recognition via temporal networks of temporal neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Temporal%20pattern%20recognition%20via%20temporal%20networks%20of%20temporal%20neurons&rft.btitle=2012%20IEEE%2027th%20Convention%20of%20Electrical%20and%20Electronics%20Engineers%20in%20Israel&rft.au=Frid,%20Alex&rft.date=2012-11&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467346825&rft.isbn_list=1467346829&rft_id=info:doi/10.1109/EEEI.2012.6377010&rft.eisbn=1467346802&rft.eisbn_list=9781467346801&rft.eisbn_list=9781467346818&rft.eisbn_list=1467346810&rft_dat=%3Cieee_6IE%3E6377010%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ca9397429c56714ef134329c96a8068d59670a693233d4c62d735c37b0a1c7763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6377010&rfr_iscdi=true