Loading…

Frenet-Serret and the Estimation of Curvature and Torsion

In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. I...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing 2013-08, Vol.7 (4), p.646-654
Main Authors: Kwang-Rae Kim, Kim, Peter T., Ja-Yong Koo, Pierrynowski, Michael R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973
cites cdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973
container_end_page 654
container_issue 4
container_start_page 646
container_title IEEE journal of selected topics in signal processing
container_volume 7
creator Kwang-Rae Kim
Kim, Peter T.
Ja-Yong Koo
Pierrynowski, Michael R.
description In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.
doi_str_mv 10.1109/JSTSP.2012.2232280
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6377229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6377229</ieee_id><sourcerecordid>10_1109_JSTSP_2012_2232280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</originalsourceid><addsrcrecordid>eNo9j91Kw0AQhRdRsFZfQG_yAonzs8l2L6W0VikotF6HTXaCFW1kdyv49jZt8eoMHL7hfErdIhSIYO-fV-vVa0GAVBAx0QTO1Aitxhz0RJ8PN1Ouy5Iv1VWMHwClqVCPlJ0H2UrKVxKCpMxtfZbeJZvFtPlyadNvs77Lprvw49IuyKFf9yHui2t10bnPKDenHKu3-Ww9XeTLl8en6cMyb6kyKSfdOGbr0WBjxWBlNJMIiCNu0VtED1pKw6bzLVTSGc-Gm8aBL6GzhseKjn_b0McYpKu_w35b-K0R6kG-PsjXg3x9kt9Dd0doIyL_QMXGEFn-A_8tVZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frenet-Serret and the Estimation of Curvature and Torsion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kwang-Rae Kim ; Kim, Peter T. ; Ja-Yong Koo ; Pierrynowski, Michael R.</creator><creatorcontrib>Kwang-Rae Kim ; Kim, Peter T. ; Ja-Yong Koo ; Pierrynowski, Michael R.</creatorcontrib><description>In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2012.2232280</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binormal ; Biomechanics ; bone pin and skin marker ; Bones ; Differential equations ; Knee ; knots ; normal ; Skin ; smooth curve ; splines ; Splines (mathematics) ; tangent ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2013-08, Vol.7 (4), p.646-654</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</citedby><cites>FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6377229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kwang-Rae Kim</creatorcontrib><creatorcontrib>Kim, Peter T.</creatorcontrib><creatorcontrib>Ja-Yong Koo</creatorcontrib><creatorcontrib>Pierrynowski, Michael R.</creatorcontrib><title>Frenet-Serret and the Estimation of Curvature and Torsion</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.</description><subject>Binormal</subject><subject>Biomechanics</subject><subject>bone pin and skin marker</subject><subject>Bones</subject><subject>Differential equations</subject><subject>Knee</subject><subject>knots</subject><subject>normal</subject><subject>Skin</subject><subject>smooth curve</subject><subject>splines</subject><subject>Splines (mathematics)</subject><subject>tangent</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j91Kw0AQhRdRsFZfQG_yAonzs8l2L6W0VikotF6HTXaCFW1kdyv49jZt8eoMHL7hfErdIhSIYO-fV-vVa0GAVBAx0QTO1Aitxhz0RJ8PN1Ouy5Iv1VWMHwClqVCPlJ0H2UrKVxKCpMxtfZbeJZvFtPlyadNvs77Lprvw49IuyKFf9yHui2t10bnPKDenHKu3-Ww9XeTLl8en6cMyb6kyKSfdOGbr0WBjxWBlNJMIiCNu0VtED1pKw6bzLVTSGc-Gm8aBL6GzhseKjn_b0McYpKu_w35b-K0R6kG-PsjXg3x9kt9Dd0doIyL_QMXGEFn-A_8tVZ4</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Kwang-Rae Kim</creator><creator>Kim, Peter T.</creator><creator>Ja-Yong Koo</creator><creator>Pierrynowski, Michael R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Frenet-Serret and the Estimation of Curvature and Torsion</title><author>Kwang-Rae Kim ; Kim, Peter T. ; Ja-Yong Koo ; Pierrynowski, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binormal</topic><topic>Biomechanics</topic><topic>bone pin and skin marker</topic><topic>Bones</topic><topic>Differential equations</topic><topic>Knee</topic><topic>knots</topic><topic>normal</topic><topic>Skin</topic><topic>smooth curve</topic><topic>splines</topic><topic>Splines (mathematics)</topic><topic>tangent</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwang-Rae Kim</creatorcontrib><creatorcontrib>Kim, Peter T.</creatorcontrib><creatorcontrib>Ja-Yong Koo</creatorcontrib><creatorcontrib>Pierrynowski, Michael R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwang-Rae Kim</au><au>Kim, Peter T.</au><au>Ja-Yong Koo</au><au>Pierrynowski, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frenet-Serret and the Estimation of Curvature and Torsion</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>646</spage><epage>654</epage><pages>646-654</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.</abstract><pub>IEEE</pub><doi>10.1109/JSTSP.2012.2232280</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2013-08, Vol.7 (4), p.646-654
issn 1932-4553
1941-0484
language eng
recordid cdi_ieee_primary_6377229
source IEEE Electronic Library (IEL) Journals
subjects Binormal
Biomechanics
bone pin and skin marker
Bones
Differential equations
Knee
knots
normal
Skin
smooth curve
splines
Splines (mathematics)
tangent
Vectors
title Frenet-Serret and the Estimation of Curvature and Torsion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frenet-Serret%20and%20the%20Estimation%20of%20Curvature%20and%20Torsion&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Kwang-Rae%20Kim&rft.date=2013-08-01&rft.volume=7&rft.issue=4&rft.spage=646&rft.epage=654&rft.pages=646-654&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2012.2232280&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSTSP_2012_2232280%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6377229&rfr_iscdi=true