Loading…
Frenet-Serret and the Estimation of Curvature and Torsion
In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. I...
Saved in:
Published in: | IEEE journal of selected topics in signal processing 2013-08, Vol.7 (4), p.646-654 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973 |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973 |
container_end_page | 654 |
container_issue | 4 |
container_start_page | 646 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 7 |
creator | Kwang-Rae Kim Kim, Peter T. Ja-Yong Koo Pierrynowski, Michael R. |
description | In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application. |
doi_str_mv | 10.1109/JSTSP.2012.2232280 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6377229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6377229</ieee_id><sourcerecordid>10_1109_JSTSP_2012_2232280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</originalsourceid><addsrcrecordid>eNo9j91Kw0AQhRdRsFZfQG_yAonzs8l2L6W0VikotF6HTXaCFW1kdyv49jZt8eoMHL7hfErdIhSIYO-fV-vVa0GAVBAx0QTO1Aitxhz0RJ8PN1Ouy5Iv1VWMHwClqVCPlJ0H2UrKVxKCpMxtfZbeJZvFtPlyadNvs77Lprvw49IuyKFf9yHui2t10bnPKDenHKu3-Ww9XeTLl8en6cMyb6kyKSfdOGbr0WBjxWBlNJMIiCNu0VtED1pKw6bzLVTSGc-Gm8aBL6GzhseKjn_b0McYpKu_w35b-K0R6kG-PsjXg3x9kt9Dd0doIyL_QMXGEFn-A_8tVZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frenet-Serret and the Estimation of Curvature and Torsion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kwang-Rae Kim ; Kim, Peter T. ; Ja-Yong Koo ; Pierrynowski, Michael R.</creator><creatorcontrib>Kwang-Rae Kim ; Kim, Peter T. ; Ja-Yong Koo ; Pierrynowski, Michael R.</creatorcontrib><description>In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2012.2232280</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binormal ; Biomechanics ; bone pin and skin marker ; Bones ; Differential equations ; Knee ; knots ; normal ; Skin ; smooth curve ; splines ; Splines (mathematics) ; tangent ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2013-08, Vol.7 (4), p.646-654</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</citedby><cites>FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6377229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kwang-Rae Kim</creatorcontrib><creatorcontrib>Kim, Peter T.</creatorcontrib><creatorcontrib>Ja-Yong Koo</creatorcontrib><creatorcontrib>Pierrynowski, Michael R.</creatorcontrib><title>Frenet-Serret and the Estimation of Curvature and Torsion</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.</description><subject>Binormal</subject><subject>Biomechanics</subject><subject>bone pin and skin marker</subject><subject>Bones</subject><subject>Differential equations</subject><subject>Knee</subject><subject>knots</subject><subject>normal</subject><subject>Skin</subject><subject>smooth curve</subject><subject>splines</subject><subject>Splines (mathematics)</subject><subject>tangent</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j91Kw0AQhRdRsFZfQG_yAonzs8l2L6W0VikotF6HTXaCFW1kdyv49jZt8eoMHL7hfErdIhSIYO-fV-vVa0GAVBAx0QTO1Aitxhz0RJ8PN1Ouy5Iv1VWMHwClqVCPlJ0H2UrKVxKCpMxtfZbeJZvFtPlyadNvs77Lprvw49IuyKFf9yHui2t10bnPKDenHKu3-Ww9XeTLl8en6cMyb6kyKSfdOGbr0WBjxWBlNJMIiCNu0VtED1pKw6bzLVTSGc-Gm8aBL6GzhseKjn_b0McYpKu_w35b-K0R6kG-PsjXg3x9kt9Dd0doIyL_QMXGEFn-A_8tVZ4</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Kwang-Rae Kim</creator><creator>Kim, Peter T.</creator><creator>Ja-Yong Koo</creator><creator>Pierrynowski, Michael R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Frenet-Serret and the Estimation of Curvature and Torsion</title><author>Kwang-Rae Kim ; Kim, Peter T. ; Ja-Yong Koo ; Pierrynowski, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binormal</topic><topic>Biomechanics</topic><topic>bone pin and skin marker</topic><topic>Bones</topic><topic>Differential equations</topic><topic>Knee</topic><topic>knots</topic><topic>normal</topic><topic>Skin</topic><topic>smooth curve</topic><topic>splines</topic><topic>Splines (mathematics)</topic><topic>tangent</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwang-Rae Kim</creatorcontrib><creatorcontrib>Kim, Peter T.</creatorcontrib><creatorcontrib>Ja-Yong Koo</creatorcontrib><creatorcontrib>Pierrynowski, Michael R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwang-Rae Kim</au><au>Kim, Peter T.</au><au>Ja-Yong Koo</au><au>Pierrynowski, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frenet-Serret and the Estimation of Curvature and Torsion</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>646</spage><epage>654</epage><pages>646-654</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.</abstract><pub>IEEE</pub><doi>10.1109/JSTSP.2012.2232280</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2013-08, Vol.7 (4), p.646-654 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_ieee_primary_6377229 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Binormal Biomechanics bone pin and skin marker Bones Differential equations Knee knots normal Skin smooth curve splines Splines (mathematics) tangent Vectors |
title | Frenet-Serret and the Estimation of Curvature and Torsion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frenet-Serret%20and%20the%20Estimation%20of%20Curvature%20and%20Torsion&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Kwang-Rae%20Kim&rft.date=2013-08-01&rft.volume=7&rft.issue=4&rft.spage=646&rft.epage=654&rft.pages=646-654&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2012.2232280&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSTSP_2012_2232280%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-24ba339d171b9e7167432ee0ea23c1d911d04e5737fdc06ef7d373bba0d50f973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6377229&rfr_iscdi=true |