Loading…

Depth-dependent crossover in genetic programming with frequent trees

One of the most well studied issues in genetic programming is how to make building blocks efficiently. To make building blocks, it is important to find the substructures that appear in the individuals with higher fitness. Recently, a method based on frequent substructures has been proposed, and it h...

Full description

Saved in:
Bibliographic Details
Main Authors: Ono, K., Hanada, Y., Shirakawa, K., Kumano, M., Kimura, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 363
container_issue
container_start_page 359
container_title
container_volume
creator Ono, K.
Hanada, Y.
Shirakawa, K.
Kumano, M.
Kimura, M.
description One of the most well studied issues in genetic programming is how to make building blocks efficiently. To make building blocks, it is important to find the substructures that appear in the individuals with higher fitness. Recently, a method based on frequent substructures has been proposed, and it has shown good performance; however, the depth of trees is not considered in the method. In this paper, we propose a hybrid crossover that involves the consideration of a combination of frequent trees and the depth of trees and apply the proposed method to symbolic regression problems. We experimentally demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/ICSMC.2012.6377727
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6377727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6377727</ieee_id><sourcerecordid>6377727</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2c6b0e6fdd330c74172add535e3febfbd64d4c425f8cb31f11200f0536da2c433</originalsourceid><addsrcrecordid>eNo1kMlOwzAURc0k0Zb-AGzyAwl-z1OyRClDpSIWgMSuSuzn1IgMOAHE3yNEWd3FOTqLy9g58AyAF5fr8vG-zJADZloYY9AcsDlIbQQYkPKQzVAZk4JW6ogtC5P_M1EcsxlwjWmB-HLK5uP4yjlyCfmMrVY0TLvU0UCdo25KbOzHsf-kmIQuaaijKdhkiH0Tq7YNXZN8hWmX-EjvH7_6FInGM3biq7eRlvtdsOeb66fyLt083K7Lq00awKgpRatrTto7JwS3RoLByjklFAlPta-dlk5aicrnthbgAZBzz5XQrkIrhViwi79uIKLtEENbxe_t_g3xA9AhUIc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Depth-dependent crossover in genetic programming with frequent trees</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ono, K. ; Hanada, Y. ; Shirakawa, K. ; Kumano, M. ; Kimura, M.</creator><creatorcontrib>Ono, K. ; Hanada, Y. ; Shirakawa, K. ; Kumano, M. ; Kimura, M.</creatorcontrib><description>One of the most well studied issues in genetic programming is how to make building blocks efficiently. To make building blocks, it is important to find the substructures that appear in the individuals with higher fitness. Recently, a method based on frequent substructures has been proposed, and it has shown good performance; however, the depth of trees is not considered in the method. In this paper, we propose a hybrid crossover that involves the consideration of a combination of frequent trees and the depth of trees and apply the proposed method to symbolic regression problems. We experimentally demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781467317139</identifier><identifier>ISBN: 1467317136</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1467317144</identifier><identifier>EISBN: 9781467317122</identifier><identifier>EISBN: 9781467317146</identifier><identifier>EISBN: 1467317128</identifier><identifier>DOI: 10.1109/ICSMC.2012.6377727</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Crossover ; Conferences ; Data mining ; Depth-control Scheme ; Educational institutions ; Frequent Tree ; Genetic programming ; Informatics ; Sociology ; Statistics</subject><ispartof>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.359-363</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6377727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6377727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ono, K.</creatorcontrib><creatorcontrib>Hanada, Y.</creatorcontrib><creatorcontrib>Shirakawa, K.</creatorcontrib><creatorcontrib>Kumano, M.</creatorcontrib><creatorcontrib>Kimura, M.</creatorcontrib><title>Depth-dependent crossover in genetic programming with frequent trees</title><title>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>ICSMC</addtitle><description>One of the most well studied issues in genetic programming is how to make building blocks efficiently. To make building blocks, it is important to find the substructures that appear in the individuals with higher fitness. Recently, a method based on frequent substructures has been proposed, and it has shown good performance; however, the depth of trees is not considered in the method. In this paper, we propose a hybrid crossover that involves the consideration of a combination of frequent trees and the depth of trees and apply the proposed method to symbolic regression problems. We experimentally demonstrate the effectiveness of the proposed method.</description><subject>Adaptive Crossover</subject><subject>Conferences</subject><subject>Data mining</subject><subject>Depth-control Scheme</subject><subject>Educational institutions</subject><subject>Frequent Tree</subject><subject>Genetic programming</subject><subject>Informatics</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781467317139</isbn><isbn>1467317136</isbn><isbn>1467317144</isbn><isbn>9781467317122</isbn><isbn>9781467317146</isbn><isbn>1467317128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMlOwzAURc0k0Zb-AGzyAwl-z1OyRClDpSIWgMSuSuzn1IgMOAHE3yNEWd3FOTqLy9g58AyAF5fr8vG-zJADZloYY9AcsDlIbQQYkPKQzVAZk4JW6ogtC5P_M1EcsxlwjWmB-HLK5uP4yjlyCfmMrVY0TLvU0UCdo25KbOzHsf-kmIQuaaijKdhkiH0Tq7YNXZN8hWmX-EjvH7_6FInGM3biq7eRlvtdsOeb66fyLt083K7Lq00awKgpRatrTto7JwS3RoLByjklFAlPta-dlk5aicrnthbgAZBzz5XQrkIrhViwi79uIKLtEENbxe_t_g3xA9AhUIc</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Ono, K.</creator><creator>Hanada, Y.</creator><creator>Shirakawa, K.</creator><creator>Kumano, M.</creator><creator>Kimura, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Depth-dependent crossover in genetic programming with frequent trees</title><author>Ono, K. ; Hanada, Y. ; Shirakawa, K. ; Kumano, M. ; Kimura, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2c6b0e6fdd330c74172add535e3febfbd64d4c425f8cb31f11200f0536da2c433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive Crossover</topic><topic>Conferences</topic><topic>Data mining</topic><topic>Depth-control Scheme</topic><topic>Educational institutions</topic><topic>Frequent Tree</topic><topic>Genetic programming</topic><topic>Informatics</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Ono, K.</creatorcontrib><creatorcontrib>Hanada, Y.</creatorcontrib><creatorcontrib>Shirakawa, K.</creatorcontrib><creatorcontrib>Kumano, M.</creatorcontrib><creatorcontrib>Kimura, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ono, K.</au><au>Hanada, Y.</au><au>Shirakawa, K.</au><au>Kumano, M.</au><au>Kimura, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Depth-dependent crossover in genetic programming with frequent trees</atitle><btitle>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>ICSMC</stitle><date>2012-10</date><risdate>2012</risdate><spage>359</spage><epage>363</epage><pages>359-363</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781467317139</isbn><isbn>1467317136</isbn><eisbn>1467317144</eisbn><eisbn>9781467317122</eisbn><eisbn>9781467317146</eisbn><eisbn>1467317128</eisbn><abstract>One of the most well studied issues in genetic programming is how to make building blocks efficiently. To make building blocks, it is important to find the substructures that appear in the individuals with higher fitness. Recently, a method based on frequent substructures has been proposed, and it has shown good performance; however, the depth of trees is not considered in the method. In this paper, we propose a hybrid crossover that involves the consideration of a combination of frequent trees and the depth of trees and apply the proposed method to symbolic regression problems. We experimentally demonstrate the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2012.6377727</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.359-363
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_6377727
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Crossover
Conferences
Data mining
Depth-control Scheme
Educational institutions
Frequent Tree
Genetic programming
Informatics
Sociology
Statistics
title Depth-dependent crossover in genetic programming with frequent trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Depth-dependent%20crossover%20in%20genetic%20programming%20with%20frequent%20trees&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Ono,%20K.&rft.date=2012-10&rft.spage=359&rft.epage=363&rft.pages=359-363&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781467317139&rft.isbn_list=1467317136&rft_id=info:doi/10.1109/ICSMC.2012.6377727&rft.eisbn=1467317144&rft.eisbn_list=9781467317122&rft.eisbn_list=9781467317146&rft.eisbn_list=1467317128&rft_dat=%3Cieee_6IE%3E6377727%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2c6b0e6fdd330c74172add535e3febfbd64d4c425f8cb31f11200f0536da2c433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6377727&rfr_iscdi=true