Loading…

Motion recognition with smart phone embedded 3-axis accelerometer sensor

As the technology surrounding smart phone devices has changed over the past few years, we now find a device containing a collection of sensors. Indeed, one can say that the development of smart phones has been one of the most important advances in science and technology. We will show an additional u...

Full description

Saved in:
Bibliographic Details
Main Authors: Hyunju Cho, Sangchul Kim, Jinsuk Baek, Fisher, P. S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 924
container_issue
container_start_page 919
container_title
container_volume
creator Hyunju Cho
Sangchul Kim
Jinsuk Baek
Fisher, P. S.
description As the technology surrounding smart phone devices has changed over the past few years, we now find a device containing a collection of sensors. Indeed, one can say that the development of smart phones has been one of the most important advances in science and technology. We will show an additional usage for the smart phone: utilizing it for a generic, hardware, gaming controller. We will show how a motion recognition mechanism can be used for determining rate of change and position of the phone as it moves in 3D-space using the embedded 3-axes accelerometer sensor. Upon sensing a user's motions with the smart phone, the corresponding accelerometer values are transmitted to the gaming console through the Wi-Fi communication. Motion recognition is then performed at the gaming console using a pattern matching mechanism. The proposed mechanism is applied to the game of tennis to recognize three primary ground stroke motions: the forehand stroke, backhand stroke, and service. With individual calibration for these three motions, we show how accurately the system can recognize the motions, and derive ball-hit likelihood. These types of results, when fully realized, can provide a much richer and simpler experience for the user.
doi_str_mv 10.1109/ICSMC.2012.6377845
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6377845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6377845</ieee_id><sourcerecordid>6377845</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9c4a478ec4124ab693de1a0931edb23fc21aa3dcc3e73910dc0a26e0b6977f563</originalsourceid><addsrcrecordid>eNo1kNtKAzEYhOMJ3Na-gN7kBbbmz3FzKYvaQosXKnhXssm_NtLdlM2C-vYWrVczMB_DMIRcA5sDMHu7rJ_X9Zwz4HMtjKmkOiETkNoIMCDlKSm4MqYErdQZmVlT_WfCnpMCmOal5fztkkxy_mCMMwlVQRbrNMbU0wF9eu_jr_-M45bmzg0j3W9TjxS7BkPAQEXpvmKmznvc4ZA6HHGgGfuchity0bpdxtlRp-T14f6lXpSrp8dlfbcqIxg1ltZLJ02FXgKXrtFWBATHrAAMDRet5-CcCN4LNMICC545rpEdSGNapcWU3Pz1RkTc7Id42Pm9OT4ifgDxLVFz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Motion recognition with smart phone embedded 3-axis accelerometer sensor</title><source>IEEE Xplore All Conference Series</source><creator>Hyunju Cho ; Sangchul Kim ; Jinsuk Baek ; Fisher, P. S.</creator><creatorcontrib>Hyunju Cho ; Sangchul Kim ; Jinsuk Baek ; Fisher, P. S.</creatorcontrib><description>As the technology surrounding smart phone devices has changed over the past few years, we now find a device containing a collection of sensors. Indeed, one can say that the development of smart phones has been one of the most important advances in science and technology. We will show an additional usage for the smart phone: utilizing it for a generic, hardware, gaming controller. We will show how a motion recognition mechanism can be used for determining rate of change and position of the phone as it moves in 3D-space using the embedded 3-axes accelerometer sensor. Upon sensing a user's motions with the smart phone, the corresponding accelerometer values are transmitted to the gaming console through the Wi-Fi communication. Motion recognition is then performed at the gaming console using a pattern matching mechanism. The proposed mechanism is applied to the game of tennis to recognize three primary ground stroke motions: the forehand stroke, backhand stroke, and service. With individual calibration for these three motions, we show how accurately the system can recognize the motions, and derive ball-hit likelihood. These types of results, when fully realized, can provide a much richer and simpler experience for the user.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781467317139</identifier><identifier>ISBN: 1467317136</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1467317144</identifier><identifier>EISBN: 9781467317122</identifier><identifier>EISBN: 9781467317146</identifier><identifier>EISBN: 1467317128</identifier><identifier>DOI: 10.1109/ICSMC.2012.6377845</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Accelerometers ; acceleromter ; augmented reality ; Games ; Gravity ; motion recognition ; Pattern matching ; smart phone ; Smart phones ; Vectors</subject><ispartof>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.919-924</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6377845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6377845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyunju Cho</creatorcontrib><creatorcontrib>Sangchul Kim</creatorcontrib><creatorcontrib>Jinsuk Baek</creatorcontrib><creatorcontrib>Fisher, P. S.</creatorcontrib><title>Motion recognition with smart phone embedded 3-axis accelerometer sensor</title><title>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>ICSMC</addtitle><description>As the technology surrounding smart phone devices has changed over the past few years, we now find a device containing a collection of sensors. Indeed, one can say that the development of smart phones has been one of the most important advances in science and technology. We will show an additional usage for the smart phone: utilizing it for a generic, hardware, gaming controller. We will show how a motion recognition mechanism can be used for determining rate of change and position of the phone as it moves in 3D-space using the embedded 3-axes accelerometer sensor. Upon sensing a user's motions with the smart phone, the corresponding accelerometer values are transmitted to the gaming console through the Wi-Fi communication. Motion recognition is then performed at the gaming console using a pattern matching mechanism. The proposed mechanism is applied to the game of tennis to recognize three primary ground stroke motions: the forehand stroke, backhand stroke, and service. With individual calibration for these three motions, we show how accurately the system can recognize the motions, and derive ball-hit likelihood. These types of results, when fully realized, can provide a much richer and simpler experience for the user.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>acceleromter</subject><subject>augmented reality</subject><subject>Games</subject><subject>Gravity</subject><subject>motion recognition</subject><subject>Pattern matching</subject><subject>smart phone</subject><subject>Smart phones</subject><subject>Vectors</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781467317139</isbn><isbn>1467317136</isbn><isbn>1467317144</isbn><isbn>9781467317122</isbn><isbn>9781467317146</isbn><isbn>1467317128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKAzEYhOMJ3Na-gN7kBbbmz3FzKYvaQosXKnhXssm_NtLdlM2C-vYWrVczMB_DMIRcA5sDMHu7rJ_X9Zwz4HMtjKmkOiETkNoIMCDlKSm4MqYErdQZmVlT_WfCnpMCmOal5fztkkxy_mCMMwlVQRbrNMbU0wF9eu_jr_-M45bmzg0j3W9TjxS7BkPAQEXpvmKmznvc4ZA6HHGgGfuchity0bpdxtlRp-T14f6lXpSrp8dlfbcqIxg1ltZLJ02FXgKXrtFWBATHrAAMDRet5-CcCN4LNMICC545rpEdSGNapcWU3Pz1RkTc7Id42Pm9OT4ifgDxLVFz</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Hyunju Cho</creator><creator>Sangchul Kim</creator><creator>Jinsuk Baek</creator><creator>Fisher, P. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Motion recognition with smart phone embedded 3-axis accelerometer sensor</title><author>Hyunju Cho ; Sangchul Kim ; Jinsuk Baek ; Fisher, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9c4a478ec4124ab693de1a0931edb23fc21aa3dcc3e73910dc0a26e0b6977f563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>acceleromter</topic><topic>augmented reality</topic><topic>Games</topic><topic>Gravity</topic><topic>motion recognition</topic><topic>Pattern matching</topic><topic>smart phone</topic><topic>Smart phones</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyunju Cho</creatorcontrib><creatorcontrib>Sangchul Kim</creatorcontrib><creatorcontrib>Jinsuk Baek</creatorcontrib><creatorcontrib>Fisher, P. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyunju Cho</au><au>Sangchul Kim</au><au>Jinsuk Baek</au><au>Fisher, P. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Motion recognition with smart phone embedded 3-axis accelerometer sensor</atitle><btitle>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>ICSMC</stitle><date>2012-10</date><risdate>2012</risdate><spage>919</spage><epage>924</epage><pages>919-924</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781467317139</isbn><isbn>1467317136</isbn><eisbn>1467317144</eisbn><eisbn>9781467317122</eisbn><eisbn>9781467317146</eisbn><eisbn>1467317128</eisbn><abstract>As the technology surrounding smart phone devices has changed over the past few years, we now find a device containing a collection of sensors. Indeed, one can say that the development of smart phones has been one of the most important advances in science and technology. We will show an additional usage for the smart phone: utilizing it for a generic, hardware, gaming controller. We will show how a motion recognition mechanism can be used for determining rate of change and position of the phone as it moves in 3D-space using the embedded 3-axes accelerometer sensor. Upon sensing a user's motions with the smart phone, the corresponding accelerometer values are transmitted to the gaming console through the Wi-Fi communication. Motion recognition is then performed at the gaming console using a pattern matching mechanism. The proposed mechanism is applied to the game of tennis to recognize three primary ground stroke motions: the forehand stroke, backhand stroke, and service. With individual calibration for these three motions, we show how accurately the system can recognize the motions, and derive ball-hit likelihood. These types of results, when fully realized, can provide a much richer and simpler experience for the user.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2012.6377845</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.919-924
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_6377845
source IEEE Xplore All Conference Series
subjects Acceleration
Accelerometers
acceleromter
augmented reality
Games
Gravity
motion recognition
Pattern matching
smart phone
Smart phones
Vectors
title Motion recognition with smart phone embedded 3-axis accelerometer sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Motion%20recognition%20with%20smart%20phone%20embedded%203-axis%20accelerometer%20sensor&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Hyunju%20Cho&rft.date=2012-10&rft.spage=919&rft.epage=924&rft.pages=919-924&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781467317139&rft.isbn_list=1467317136&rft_id=info:doi/10.1109/ICSMC.2012.6377845&rft.eisbn=1467317144&rft.eisbn_list=9781467317122&rft.eisbn_list=9781467317146&rft.eisbn_list=1467317128&rft_dat=%3Cieee_CHZPO%3E6377845%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9c4a478ec4124ab693de1a0931edb23fc21aa3dcc3e73910dc0a26e0b6977f563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6377845&rfr_iscdi=true