Loading…

Estimating the Impact of Electric Vehicle Smart Charging on Distribution Transformer Aging

This paper describes a method for estimating the impact of plug-in electric vehicle (PEV) charging on overhead distribution transformers, based on detailed travel demand data and under several different schemes for mitigating overloads by shifting PEV charging times (smart charging). The paper also...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2013-06, Vol.4 (2), p.905-913
Main Authors: Hilshey, A. D., Hines, P. D. H., Rezaei, P., Dowds, J. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes a method for estimating the impact of plug-in electric vehicle (PEV) charging on overhead distribution transformers, based on detailed travel demand data and under several different schemes for mitigating overloads by shifting PEV charging times (smart charging). The paper also presents a new smart charging algorithm that manages PEV charging based on estimated transformer temperatures. We simulated the varied behavior of drivers from the 2009 National Household Transportation Survey, and transformer temperatures based an IEEE standard dynamic thermal model. Results are shown for Monte Carlo simulation of a 25 kVA overhead distribution transformer, with ambient temperature data from hot and cold climate locations, for uncontrolled and several smart-charging scenarios. These results illustrate the substantial impact of ambient temperatures on distribution transformer aging, and indicate that temperature-based smart charging can dramatically reduce both the mean and variance in transformer aging without substantially reducing the frequency with which PEVs obtain a full charge. Finally, the results indicate that simple smart charging schemes, such as delaying charging until after midnight can actually increase, rather than decrease, transformer aging.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2012.2217385