Loading…
Range-based algorithm for posture classification and fall-down detection in smart homecare system
Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 247 |
container_issue | |
container_start_page | 243 |
container_title | |
container_volume | |
creator | Wongpatikaseree, K. Lim, A. O. Yasuo Tan Kanai, H. |
description | Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability. |
doi_str_mv | 10.1109/GCCE.2012.6379591 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6379591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6379591</ieee_id><sourcerecordid>6379591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i200t-f3d3f3f4a50a39df12a8bce17248b86ed911dcf429e5b0ead920f64f5ade27db3</originalsourceid><addsrcrecordid>eNo1UNlKAzEUjRtYaz9AfMkPpN4sM5M8ylCrUBBEn8udyU0bmaVMRqR_76D16cDZOBzG7iQspQT3sC7L1VKBVMtcFy5z8ozdSJMXWhpn83M2U7nTAmxmLv6FDEBeToIurLDS6Gu2SOkTAFQGyuVqxvANux2JChN5js2uH-K4b3noB37o0_g1EK8bTCmGWOMY-45j53nAphG-_-64p5HqXz52PLU4jHzft1TjFEzHNFJ7y64me6LFCefs42n1Xj6Lzev6pXzciKgARhG010EHgxmgdj5IhbaqSRbK2Mrm5J2Uvg5GOcoqIPROQchNyNCTKnyl5-z-rzcS0fYwxGnMcXu6Sv8AUgpbQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Range-based algorithm for posture classification and fall-down detection in smart homecare system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wongpatikaseree, K. ; Lim, A. O. ; Yasuo Tan ; Kanai, H.</creator><creatorcontrib>Wongpatikaseree, K. ; Lim, A. O. ; Yasuo Tan ; Kanai, H.</creatorcontrib><description>Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.</description><identifier>ISSN: 2378-8143</identifier><identifier>ISBN: 1467315001</identifier><identifier>ISBN: 9781467315005</identifier><identifier>EISSN: 2693-0854</identifier><identifier>EISBN: 1467314986</identifier><identifier>EISBN: 9781467314992</identifier><identifier>EISBN: 146731501X</identifier><identifier>EISBN: 9781467315012</identifier><identifier>EISBN: 9781467314985</identifier><identifier>EISBN: 1467314994</identifier><identifier>DOI: 10.1109/GCCE.2012.6379591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Classification algorithms ; fall-down detection ; Human posture classification ; Humans ; Medical services ; Monitoring ; range-based algorithm ; Sensors ; smart homecare system</subject><ispartof>The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.243-247</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6379591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6379591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wongpatikaseree, K.</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Yasuo Tan</creatorcontrib><creatorcontrib>Kanai, H.</creatorcontrib><title>Range-based algorithm for posture classification and fall-down detection in smart homecare system</title><title>The 1st IEEE Global Conference on Consumer Electronics 2012</title><addtitle>GCCE</addtitle><description>Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>fall-down detection</subject><subject>Human posture classification</subject><subject>Humans</subject><subject>Medical services</subject><subject>Monitoring</subject><subject>range-based algorithm</subject><subject>Sensors</subject><subject>smart homecare system</subject><issn>2378-8143</issn><issn>2693-0854</issn><isbn>1467315001</isbn><isbn>9781467315005</isbn><isbn>1467314986</isbn><isbn>9781467314992</isbn><isbn>146731501X</isbn><isbn>9781467315012</isbn><isbn>9781467314985</isbn><isbn>1467314994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNlKAzEUjRtYaz9AfMkPpN4sM5M8ylCrUBBEn8udyU0bmaVMRqR_76D16cDZOBzG7iQspQT3sC7L1VKBVMtcFy5z8ozdSJMXWhpn83M2U7nTAmxmLv6FDEBeToIurLDS6Gu2SOkTAFQGyuVqxvANux2JChN5js2uH-K4b3noB37o0_g1EK8bTCmGWOMY-45j53nAphG-_-64p5HqXz52PLU4jHzft1TjFEzHNFJ7y64me6LFCefs42n1Xj6Lzev6pXzciKgARhG010EHgxmgdj5IhbaqSRbK2Mrm5J2Uvg5GOcoqIPROQchNyNCTKnyl5-z-rzcS0fYwxGnMcXu6Sv8AUgpbQw</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Wongpatikaseree, K.</creator><creator>Lim, A. O.</creator><creator>Yasuo Tan</creator><creator>Kanai, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Range-based algorithm for posture classification and fall-down detection in smart homecare system</title><author>Wongpatikaseree, K. ; Lim, A. O. ; Yasuo Tan ; Kanai, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i200t-f3d3f3f4a50a39df12a8bce17248b86ed911dcf429e5b0ead920f64f5ade27db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>fall-down detection</topic><topic>Human posture classification</topic><topic>Humans</topic><topic>Medical services</topic><topic>Monitoring</topic><topic>range-based algorithm</topic><topic>Sensors</topic><topic>smart homecare system</topic><toplevel>online_resources</toplevel><creatorcontrib>Wongpatikaseree, K.</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Yasuo Tan</creatorcontrib><creatorcontrib>Kanai, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wongpatikaseree, K.</au><au>Lim, A. O.</au><au>Yasuo Tan</au><au>Kanai, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Range-based algorithm for posture classification and fall-down detection in smart homecare system</atitle><btitle>The 1st IEEE Global Conference on Consumer Electronics 2012</btitle><stitle>GCCE</stitle><date>2012-10</date><risdate>2012</risdate><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>2378-8143</issn><eissn>2693-0854</eissn><isbn>1467315001</isbn><isbn>9781467315005</isbn><eisbn>1467314986</eisbn><eisbn>9781467314992</eisbn><eisbn>146731501X</eisbn><eisbn>9781467315012</eisbn><eisbn>9781467314985</eisbn><eisbn>1467314994</eisbn><abstract>Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.</abstract><pub>IEEE</pub><doi>10.1109/GCCE.2012.6379591</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2378-8143 |
ispartof | The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.243-247 |
issn | 2378-8143 2693-0854 |
language | eng |
recordid | cdi_ieee_primary_6379591 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Algorithm design and analysis Classification algorithms fall-down detection Human posture classification Humans Medical services Monitoring range-based algorithm Sensors smart homecare system |
title | Range-based algorithm for posture classification and fall-down detection in smart homecare system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Range-based%20algorithm%20for%20posture%20classification%20and%20fall-down%20detection%20in%20smart%20homecare%20system&rft.btitle=The%201st%20IEEE%20Global%20Conference%20on%20Consumer%20Electronics%202012&rft.au=Wongpatikaseree,%20K.&rft.date=2012-10&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=2378-8143&rft.eissn=2693-0854&rft.isbn=1467315001&rft.isbn_list=9781467315005&rft_id=info:doi/10.1109/GCCE.2012.6379591&rft.eisbn=1467314986&rft.eisbn_list=9781467314992&rft.eisbn_list=146731501X&rft.eisbn_list=9781467315012&rft.eisbn_list=9781467314985&rft.eisbn_list=1467314994&rft_dat=%3Cieee_6IE%3E6379591%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i200t-f3d3f3f4a50a39df12a8bce17248b86ed911dcf429e5b0ead920f64f5ade27db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6379591&rfr_iscdi=true |