Loading…

Range-based algorithm for posture classification and fall-down detection in smart homecare system

Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated...

Full description

Saved in:
Bibliographic Details
Main Authors: Wongpatikaseree, K., Lim, A. O., Yasuo Tan, Kanai, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 247
container_issue
container_start_page 243
container_title
container_volume
creator Wongpatikaseree, K.
Lim, A. O.
Yasuo Tan
Kanai, H.
description Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.
doi_str_mv 10.1109/GCCE.2012.6379591
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6379591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6379591</ieee_id><sourcerecordid>6379591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i200t-f3d3f3f4a50a39df12a8bce17248b86ed911dcf429e5b0ead920f64f5ade27db3</originalsourceid><addsrcrecordid>eNo1UNlKAzEUjRtYaz9AfMkPpN4sM5M8ylCrUBBEn8udyU0bmaVMRqR_76D16cDZOBzG7iQspQT3sC7L1VKBVMtcFy5z8ozdSJMXWhpn83M2U7nTAmxmLv6FDEBeToIurLDS6Gu2SOkTAFQGyuVqxvANux2JChN5js2uH-K4b3noB37o0_g1EK8bTCmGWOMY-45j53nAphG-_-64p5HqXz52PLU4jHzft1TjFEzHNFJ7y64me6LFCefs42n1Xj6Lzev6pXzciKgARhG010EHgxmgdj5IhbaqSRbK2Mrm5J2Uvg5GOcoqIPROQchNyNCTKnyl5-z-rzcS0fYwxGnMcXu6Sv8AUgpbQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Range-based algorithm for posture classification and fall-down detection in smart homecare system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wongpatikaseree, K. ; Lim, A. O. ; Yasuo Tan ; Kanai, H.</creator><creatorcontrib>Wongpatikaseree, K. ; Lim, A. O. ; Yasuo Tan ; Kanai, H.</creatorcontrib><description>Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.</description><identifier>ISSN: 2378-8143</identifier><identifier>ISBN: 1467315001</identifier><identifier>ISBN: 9781467315005</identifier><identifier>EISSN: 2693-0854</identifier><identifier>EISBN: 1467314986</identifier><identifier>EISBN: 9781467314992</identifier><identifier>EISBN: 146731501X</identifier><identifier>EISBN: 9781467315012</identifier><identifier>EISBN: 9781467314985</identifier><identifier>EISBN: 1467314994</identifier><identifier>DOI: 10.1109/GCCE.2012.6379591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Classification algorithms ; fall-down detection ; Human posture classification ; Humans ; Medical services ; Monitoring ; range-based algorithm ; Sensors ; smart homecare system</subject><ispartof>The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.243-247</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6379591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6379591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wongpatikaseree, K.</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Yasuo Tan</creatorcontrib><creatorcontrib>Kanai, H.</creatorcontrib><title>Range-based algorithm for posture classification and fall-down detection in smart homecare system</title><title>The 1st IEEE Global Conference on Consumer Electronics 2012</title><addtitle>GCCE</addtitle><description>Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>fall-down detection</subject><subject>Human posture classification</subject><subject>Humans</subject><subject>Medical services</subject><subject>Monitoring</subject><subject>range-based algorithm</subject><subject>Sensors</subject><subject>smart homecare system</subject><issn>2378-8143</issn><issn>2693-0854</issn><isbn>1467315001</isbn><isbn>9781467315005</isbn><isbn>1467314986</isbn><isbn>9781467314992</isbn><isbn>146731501X</isbn><isbn>9781467315012</isbn><isbn>9781467314985</isbn><isbn>1467314994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNlKAzEUjRtYaz9AfMkPpN4sM5M8ylCrUBBEn8udyU0bmaVMRqR_76D16cDZOBzG7iQspQT3sC7L1VKBVMtcFy5z8ozdSJMXWhpn83M2U7nTAmxmLv6FDEBeToIurLDS6Gu2SOkTAFQGyuVqxvANux2JChN5js2uH-K4b3noB37o0_g1EK8bTCmGWOMY-45j53nAphG-_-64p5HqXz52PLU4jHzft1TjFEzHNFJ7y64me6LFCefs42n1Xj6Lzev6pXzciKgARhG010EHgxmgdj5IhbaqSRbK2Mrm5J2Uvg5GOcoqIPROQchNyNCTKnyl5-z-rzcS0fYwxGnMcXu6Sv8AUgpbQw</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Wongpatikaseree, K.</creator><creator>Lim, A. O.</creator><creator>Yasuo Tan</creator><creator>Kanai, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Range-based algorithm for posture classification and fall-down detection in smart homecare system</title><author>Wongpatikaseree, K. ; Lim, A. O. ; Yasuo Tan ; Kanai, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i200t-f3d3f3f4a50a39df12a8bce17248b86ed911dcf429e5b0ead920f64f5ade27db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>fall-down detection</topic><topic>Human posture classification</topic><topic>Humans</topic><topic>Medical services</topic><topic>Monitoring</topic><topic>range-based algorithm</topic><topic>Sensors</topic><topic>smart homecare system</topic><toplevel>online_resources</toplevel><creatorcontrib>Wongpatikaseree, K.</creatorcontrib><creatorcontrib>Lim, A. O.</creatorcontrib><creatorcontrib>Yasuo Tan</creatorcontrib><creatorcontrib>Kanai, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wongpatikaseree, K.</au><au>Lim, A. O.</au><au>Yasuo Tan</au><au>Kanai, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Range-based algorithm for posture classification and fall-down detection in smart homecare system</atitle><btitle>The 1st IEEE Global Conference on Consumer Electronics 2012</btitle><stitle>GCCE</stitle><date>2012-10</date><risdate>2012</risdate><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>2378-8143</issn><eissn>2693-0854</eissn><isbn>1467315001</isbn><isbn>9781467315005</isbn><eisbn>1467314986</eisbn><eisbn>9781467314992</eisbn><eisbn>146731501X</eisbn><eisbn>9781467315012</eisbn><eisbn>9781467314985</eisbn><eisbn>1467314994</eisbn><abstract>Human posture classification is one of the most challenging issues in smart homecare system. To achieve high classification accuracy, we propose a new algorithm, called range-based algorithm. In this paper, a range means the distance between body parts. The ranges between body parts are investigated to classify the human posture and to detect a possible fall-down accident. Furthermore, we also proposed an adaptive posture window scheme to recognize the human posture in real-time even though human change the posture in different speed. The results reveal that our proposed can classify the human posture and detect fall-down with high accuracy and reliability.</abstract><pub>IEEE</pub><doi>10.1109/GCCE.2012.6379591</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2378-8143
ispartof The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.243-247
issn 2378-8143
2693-0854
language eng
recordid cdi_ieee_primary_6379591
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Algorithm design and analysis
Classification algorithms
fall-down detection
Human posture classification
Humans
Medical services
Monitoring
range-based algorithm
Sensors
smart homecare system
title Range-based algorithm for posture classification and fall-down detection in smart homecare system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Range-based%20algorithm%20for%20posture%20classification%20and%20fall-down%20detection%20in%20smart%20homecare%20system&rft.btitle=The%201st%20IEEE%20Global%20Conference%20on%20Consumer%20Electronics%202012&rft.au=Wongpatikaseree,%20K.&rft.date=2012-10&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=2378-8143&rft.eissn=2693-0854&rft.isbn=1467315001&rft.isbn_list=9781467315005&rft_id=info:doi/10.1109/GCCE.2012.6379591&rft.eisbn=1467314986&rft.eisbn_list=9781467314992&rft.eisbn_list=146731501X&rft.eisbn_list=9781467315012&rft.eisbn_list=9781467314985&rft.eisbn_list=1467314994&rft_dat=%3Cieee_6IE%3E6379591%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i200t-f3d3f3f4a50a39df12a8bce17248b86ed911dcf429e5b0ead920f64f5ade27db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6379591&rfr_iscdi=true