Loading…
Robust optical-flow based self-motion estimation for a quadrotor UAV
Robotic vision has become an important field of research for micro aerial vehicles in the recent years. While many approaches for autonomous visual control of such vehicles rely on powerful ground stations, the increasing availability of small and light hardware allows for the design of more indepen...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Robotic vision has become an important field of research for micro aerial vehicles in the recent years. While many approaches for autonomous visual control of such vehicles rely on powerful ground stations, the increasing availability of small and light hardware allows for the design of more independent systems. In this context, we present a robust algorithm able to recover the UAV ego-motion using a monocular camera and on-board hardware. Our method exploits the continuous homography constraint so as to discriminate among the observed feature points in order to classify those belonging to the dominant plane in the scene. Extensive experiments on a real quadrotor UAV demonstrate that the estimation of the scaled linear velocity in a cluttered environment improved by a factor of 25% compared to previous approaches. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2012.6386234 |