Loading…
Status of a 200-Meter DC Superconducting Power Transmission Cable After Cooling Cycles
We constructed a facility of a 200-m HTS power transmission test cable (CASER-II) in 2010. Generally, an HTS cable contracts about 0.3% when it is cooled from room temperature to liquid nitrogen (LN2) temperature. The contraction of the 200-m HTS cable corresponds to 0.6 m. In order to realize the H...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5400204-5400204 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We constructed a facility of a 200-m HTS power transmission test cable (CASER-II) in 2010. Generally, an HTS cable contracts about 0.3% when it is cooled from room temperature to liquid nitrogen (LN2) temperature. The contraction of the 200-m HTS cable corresponds to 0.6 m. In order to realize the HTS power transmission system, it is an essential issue to absorb the mechanical stress of the HTS cable during the cycles of cooling-down and heating-up. The CASER-II uses smooth pipes as the cryogenic pipe for the cable line to reduce the pressure drop of the liquid nitrogen flow, whereas the other HTS cables use corrugated pipes to absorb the mechanical stress. The CASER-II employed (1) the movable terminals at the cable end, and (2) the extendable bellows inserted in the cryogenic pipe, to absorb the contraction of 0.6 m in cooling cycles. Even at the 4th cooling-down test, no damage was observed in the CASER-II. Use of the smooth cryogenic pipe enabled low pressure drop with low LN2 flow rate, and negative pressure drop appeared at less than 5 L/sec of the LN2 flow rate. This negative pressure drop was caused by the LN2 flow assisted by siphon effect due to the difference of LN2 density along the cryogenic pipe line with elevation of 2.6 m. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2012.2235510 |