Loading…
A New String Search Tree with Multiple Alignment
String similarity search is a fundamental problem in computer science and can be applied to various fields of information processing. Construction of an efficient indexing structure is an important challenge to improve search performance. In this paper, we propose a new effective tree structure for...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 463 |
container_issue | |
container_start_page | 456 |
container_title | |
container_volume | |
creator | Sung-Hwan Kim Kwanghwi Kim Hwan-Gue Cho |
description | String similarity search is a fundamental problem in computer science and can be applied to various fields of information processing. Construction of an efficient indexing structure is an important challenge to improve search performance. In this paper, we propose a new effective tree structure for string similarity search under Levenshtein distance. We present a bottom-up approach to construct the search tree, the internal nodes of which indicate a multiple-sequence alignment of its child leaf nodes, while a leaf node representing a string element. Defining an operation to merge strings and an algorithm for computing distance to merged strings, we present an efficient search strategy with our proposed tree structure. We also demonstrate the search performance with an experimental evaluation, and verify that our method outperforms the sequential search by at most a factor of 15 in terms of the search time. |
doi_str_mv | 10.1109/CIT.2012.103 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6391942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6391942</ieee_id><sourcerecordid>6391942</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3e3026e0c76b64577de83e32d03bad73ad37c7bd0a33debab9b1ddcffc9e31243</originalsourceid><addsrcrecordid>eNotjE1Lw0AUAFdEUGtu3rzsH0h9u2-zL3sMwY9C1UNz8FZ2sy_tShpKEin-ewt6GhiGEeJewVIpcI_1qllqUHqpAC_ELZB1hSmL8vNSZI5KZSyhKQnpWmTT9AUA57AA0jcCKvnOJ7mZxzTs5Ib92O5lMzLLU5r38u27n9OxZ1n1aTcceJjvxFXn-4mzfy5E8_zU1K_5-uNlVVfrPDmYc2QEbRlassGagihyeXY6AgYfCX1EailE8IiRgw8uqBjbrmsdo9IGF-Lhb5uYeXsc08GPP1uLTjmj8RfN0ENr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New String Search Tree with Multiple Alignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sung-Hwan Kim ; Kwanghwi Kim ; Hwan-Gue Cho</creator><creatorcontrib>Sung-Hwan Kim ; Kwanghwi Kim ; Hwan-Gue Cho</creatorcontrib><description>String similarity search is a fundamental problem in computer science and can be applied to various fields of information processing. Construction of an efficient indexing structure is an important challenge to improve search performance. In this paper, we propose a new effective tree structure for string similarity search under Levenshtein distance. We present a bottom-up approach to construct the search tree, the internal nodes of which indicate a multiple-sequence alignment of its child leaf nodes, while a leaf node representing a string element. Defining an operation to merge strings and an algorithm for computing distance to merged strings, we present an efficient search strategy with our proposed tree structure. We also demonstrate the search performance with an experimental evaluation, and verify that our method outperforms the sequential search by at most a factor of 15 in terms of the search time.</description><identifier>ISBN: 9781467348737</identifier><identifier>ISBN: 1467348732</identifier><identifier>EISBN: 076954858X</identifier><identifier>EISBN: 9780769548586</identifier><identifier>DOI: 10.1109/CIT.2012.103</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximate Dictionary ; Edit Distance ; Equations ; Indexing ; Linear programming ; Merging ; Multiple Sequence Alignment ; Nearest neighbor searches ; Search problems ; String Similarity Search ; Vectors</subject><ispartof>2012 IEEE 12th International Conference on Computer and Information Technology, 2012, p.456-463</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6391942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6391942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sung-Hwan Kim</creatorcontrib><creatorcontrib>Kwanghwi Kim</creatorcontrib><creatorcontrib>Hwan-Gue Cho</creatorcontrib><title>A New String Search Tree with Multiple Alignment</title><title>2012 IEEE 12th International Conference on Computer and Information Technology</title><addtitle>cit</addtitle><description>String similarity search is a fundamental problem in computer science and can be applied to various fields of information processing. Construction of an efficient indexing structure is an important challenge to improve search performance. In this paper, we propose a new effective tree structure for string similarity search under Levenshtein distance. We present a bottom-up approach to construct the search tree, the internal nodes of which indicate a multiple-sequence alignment of its child leaf nodes, while a leaf node representing a string element. Defining an operation to merge strings and an algorithm for computing distance to merged strings, we present an efficient search strategy with our proposed tree structure. We also demonstrate the search performance with an experimental evaluation, and verify that our method outperforms the sequential search by at most a factor of 15 in terms of the search time.</description><subject>Approximate Dictionary</subject><subject>Edit Distance</subject><subject>Equations</subject><subject>Indexing</subject><subject>Linear programming</subject><subject>Merging</subject><subject>Multiple Sequence Alignment</subject><subject>Nearest neighbor searches</subject><subject>Search problems</subject><subject>String Similarity Search</subject><subject>Vectors</subject><isbn>9781467348737</isbn><isbn>1467348732</isbn><isbn>076954858X</isbn><isbn>9780769548586</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1Lw0AUAFdEUGtu3rzsH0h9u2-zL3sMwY9C1UNz8FZ2sy_tShpKEin-ewt6GhiGEeJewVIpcI_1qllqUHqpAC_ELZB1hSmL8vNSZI5KZSyhKQnpWmTT9AUA57AA0jcCKvnOJ7mZxzTs5Ib92O5lMzLLU5r38u27n9OxZ1n1aTcceJjvxFXn-4mzfy5E8_zU1K_5-uNlVVfrPDmYc2QEbRlassGagihyeXY6AgYfCX1EailE8IiRgw8uqBjbrmsdo9IGF-Lhb5uYeXsc08GPP1uLTjmj8RfN0ENr</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Sung-Hwan Kim</creator><creator>Kwanghwi Kim</creator><creator>Hwan-Gue Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>A New String Search Tree with Multiple Alignment</title><author>Sung-Hwan Kim ; Kwanghwi Kim ; Hwan-Gue Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3e3026e0c76b64577de83e32d03bad73ad37c7bd0a33debab9b1ddcffc9e31243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximate Dictionary</topic><topic>Edit Distance</topic><topic>Equations</topic><topic>Indexing</topic><topic>Linear programming</topic><topic>Merging</topic><topic>Multiple Sequence Alignment</topic><topic>Nearest neighbor searches</topic><topic>Search problems</topic><topic>String Similarity Search</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sung-Hwan Kim</creatorcontrib><creatorcontrib>Kwanghwi Kim</creatorcontrib><creatorcontrib>Hwan-Gue Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sung-Hwan Kim</au><au>Kwanghwi Kim</au><au>Hwan-Gue Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New String Search Tree with Multiple Alignment</atitle><btitle>2012 IEEE 12th International Conference on Computer and Information Technology</btitle><stitle>cit</stitle><date>2012-10</date><risdate>2012</risdate><spage>456</spage><epage>463</epage><pages>456-463</pages><isbn>9781467348737</isbn><isbn>1467348732</isbn><eisbn>076954858X</eisbn><eisbn>9780769548586</eisbn><coden>IEEPAD</coden><abstract>String similarity search is a fundamental problem in computer science and can be applied to various fields of information processing. Construction of an efficient indexing structure is an important challenge to improve search performance. In this paper, we propose a new effective tree structure for string similarity search under Levenshtein distance. We present a bottom-up approach to construct the search tree, the internal nodes of which indicate a multiple-sequence alignment of its child leaf nodes, while a leaf node representing a string element. Defining an operation to merge strings and an algorithm for computing distance to merged strings, we present an efficient search strategy with our proposed tree structure. We also demonstrate the search performance with an experimental evaluation, and verify that our method outperforms the sequential search by at most a factor of 15 in terms of the search time.</abstract><pub>IEEE</pub><doi>10.1109/CIT.2012.103</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467348737 |
ispartof | 2012 IEEE 12th International Conference on Computer and Information Technology, 2012, p.456-463 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6391942 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximate Dictionary Edit Distance Equations Indexing Linear programming Merging Multiple Sequence Alignment Nearest neighbor searches Search problems String Similarity Search Vectors |
title | A New String Search Tree with Multiple Alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20String%20Search%20Tree%20with%20Multiple%20Alignment&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Computer%20and%20Information%20Technology&rft.au=Sung-Hwan%20Kim&rft.date=2012-10&rft.spage=456&rft.epage=463&rft.pages=456-463&rft.isbn=9781467348737&rft.isbn_list=1467348732&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CIT.2012.103&rft.eisbn=076954858X&rft.eisbn_list=9780769548586&rft_dat=%3Cieee_6IE%3E6391942%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3e3026e0c76b64577de83e32d03bad73ad37c7bd0a33debab9b1ddcffc9e31243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6391942&rfr_iscdi=true |