Loading…

SCG and LM Improved BP Neural Network Load Forecasting and Programming Network Parameter Settings and Data Preprocessing

Data pre-processing in modeling of neural network (NN) is relatively more complicated and usually manual. Trial and error method is commonly used to determine the number of hidden layer neurons, which is easily affected by human factors and is opportunistic. Relevant training parameters using defaul...

Full description

Saved in:
Bibliographic Details
Main Authors: Changhao Xia, Zhonghua Yang, Bangjun Lei, Qiufeng Zhou
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 42
container_issue
container_start_page 38
container_title
container_volume
creator Changhao Xia
Zhonghua Yang
Bangjun Lei
Qiufeng Zhou
description Data pre-processing in modeling of neural network (NN) is relatively more complicated and usually manual. Trial and error method is commonly used to determine the number of hidden layer neurons, which is easily affected by human factors and is opportunistic. Relevant training parameters using default value commonly result in lower model accuracy. In this paper, a NN load forecasting model with higher accuracy was established using the actual historical load, meteorological data in Yichang, by means of the Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) improved BP algorithm which is more suitable for modeling of large or moderate size network with fast convergence. The procedures for data pre-processing and program determining the optimal number of hidden layer neurons to reduce man-made interference or contingency are presented. In order to improve generalization ability, an early termination method is used in network training. This paper proposes it is necessary to reset mu factor and the relevant learning parameters in LM training. Illustrations inform that the initial mu should be relatively larger and mu increase factor and mu decrease factor should be close to 1. The result shows that the NN intelligent forecasting model is valid and feasible.
doi_str_mv 10.1109/CSSS.2012.18
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6394256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6394256</ieee_id><sourcerecordid>6394256</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e117728309a4a4d750ca7232fc7b3332bc49aad03e2b0237840a337735b818c13</originalsourceid><addsrcrecordid>eNo1jc1PwkAUxNcYEw1y8-Zl_wHw7Uf7do9aBUmqNil38to-SJVSsq1f_70F9TSZyW9mhLhSMFUK_E2S5_lUg9JT5U7E2KMDjH1kUXk4PXplYzSAWkXnYtx1rwAwNGN0-kJ85clc0q6S6ZNcNPvQfnAl7zL5zO-BtoP0n214k2lLlZy1gUvq-nq3OVay0G4CNc3B_4MZDQn3HGTO_YHsjug99TTwPByU3HVDfinO1rTtePynI7GcPSyTx0n6Ml8kt-mk9tBPWClE7Qx4smQrjKAk1EavSyyMMboorSeqwLAuQBt0FsgYRBMVTrlSmZG4_p2tmXm1D3VD4XsVG291FJsfBXpcXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SCG and LM Improved BP Neural Network Load Forecasting and Programming Network Parameter Settings and Data Preprocessing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Changhao Xia ; Zhonghua Yang ; Bangjun Lei ; Qiufeng Zhou</creator><creatorcontrib>Changhao Xia ; Zhonghua Yang ; Bangjun Lei ; Qiufeng Zhou</creatorcontrib><description>Data pre-processing in modeling of neural network (NN) is relatively more complicated and usually manual. Trial and error method is commonly used to determine the number of hidden layer neurons, which is easily affected by human factors and is opportunistic. Relevant training parameters using default value commonly result in lower model accuracy. In this paper, a NN load forecasting model with higher accuracy was established using the actual historical load, meteorological data in Yichang, by means of the Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) improved BP algorithm which is more suitable for modeling of large or moderate size network with fast convergence. The procedures for data pre-processing and program determining the optimal number of hidden layer neurons to reduce man-made interference or contingency are presented. In order to improve generalization ability, an early termination method is used in network training. This paper proposes it is necessary to reset mu factor and the relevant learning parameters in LM training. Illustrations inform that the initial mu should be relatively larger and mu increase factor and mu decrease factor should be close to 1. The result shows that the NN intelligent forecasting model is valid and feasible.</description><identifier>ISBN: 9781467307215</identifier><identifier>ISBN: 1467307211</identifier><identifier>EISBN: 9780769547190</identifier><identifier>EISBN: 0769547192</identifier><identifier>DOI: 10.1109/CSSS.2012.18</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; BP algorithm ; Load forecasting ; Load modeling ; Mathematical model ; MATLAB ; network parameters ; neural network ; Neurons ; power system ; Predictive models ; Training</subject><ispartof>2012 International Conference on Computer Science and Service System, 2012, p.38-42</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6394256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6394256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Changhao Xia</creatorcontrib><creatorcontrib>Zhonghua Yang</creatorcontrib><creatorcontrib>Bangjun Lei</creatorcontrib><creatorcontrib>Qiufeng Zhou</creatorcontrib><title>SCG and LM Improved BP Neural Network Load Forecasting and Programming Network Parameter Settings and Data Preprocessing</title><title>2012 International Conference on Computer Science and Service System</title><addtitle>csss</addtitle><description>Data pre-processing in modeling of neural network (NN) is relatively more complicated and usually manual. Trial and error method is commonly used to determine the number of hidden layer neurons, which is easily affected by human factors and is opportunistic. Relevant training parameters using default value commonly result in lower model accuracy. In this paper, a NN load forecasting model with higher accuracy was established using the actual historical load, meteorological data in Yichang, by means of the Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) improved BP algorithm which is more suitable for modeling of large or moderate size network with fast convergence. The procedures for data pre-processing and program determining the optimal number of hidden layer neurons to reduce man-made interference or contingency are presented. In order to improve generalization ability, an early termination method is used in network training. This paper proposes it is necessary to reset mu factor and the relevant learning parameters in LM training. Illustrations inform that the initial mu should be relatively larger and mu increase factor and mu decrease factor should be close to 1. The result shows that the NN intelligent forecasting model is valid and feasible.</description><subject>Artificial neural networks</subject><subject>BP algorithm</subject><subject>Load forecasting</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>MATLAB</subject><subject>network parameters</subject><subject>neural network</subject><subject>Neurons</subject><subject>power system</subject><subject>Predictive models</subject><subject>Training</subject><isbn>9781467307215</isbn><isbn>1467307211</isbn><isbn>9780769547190</isbn><isbn>0769547192</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jc1PwkAUxNcYEw1y8-Zl_wHw7Uf7do9aBUmqNil38to-SJVSsq1f_70F9TSZyW9mhLhSMFUK_E2S5_lUg9JT5U7E2KMDjH1kUXk4PXplYzSAWkXnYtx1rwAwNGN0-kJ85clc0q6S6ZNcNPvQfnAl7zL5zO-BtoP0n214k2lLlZy1gUvq-nq3OVay0G4CNc3B_4MZDQn3HGTO_YHsjug99TTwPByU3HVDfinO1rTtePynI7GcPSyTx0n6Ml8kt-mk9tBPWClE7Qx4smQrjKAk1EavSyyMMboorSeqwLAuQBt0FsgYRBMVTrlSmZG4_p2tmXm1D3VD4XsVG291FJsfBXpcXQ</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Changhao Xia</creator><creator>Zhonghua Yang</creator><creator>Bangjun Lei</creator><creator>Qiufeng Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>SCG and LM Improved BP Neural Network Load Forecasting and Programming Network Parameter Settings and Data Preprocessing</title><author>Changhao Xia ; Zhonghua Yang ; Bangjun Lei ; Qiufeng Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e117728309a4a4d750ca7232fc7b3332bc49aad03e2b0237840a337735b818c13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>BP algorithm</topic><topic>Load forecasting</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>MATLAB</topic><topic>network parameters</topic><topic>neural network</topic><topic>Neurons</topic><topic>power system</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Changhao Xia</creatorcontrib><creatorcontrib>Zhonghua Yang</creatorcontrib><creatorcontrib>Bangjun Lei</creatorcontrib><creatorcontrib>Qiufeng Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Changhao Xia</au><au>Zhonghua Yang</au><au>Bangjun Lei</au><au>Qiufeng Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SCG and LM Improved BP Neural Network Load Forecasting and Programming Network Parameter Settings and Data Preprocessing</atitle><btitle>2012 International Conference on Computer Science and Service System</btitle><stitle>csss</stitle><date>2012-08</date><risdate>2012</risdate><spage>38</spage><epage>42</epage><pages>38-42</pages><isbn>9781467307215</isbn><isbn>1467307211</isbn><eisbn>9780769547190</eisbn><eisbn>0769547192</eisbn><coden>IEEPAD</coden><abstract>Data pre-processing in modeling of neural network (NN) is relatively more complicated and usually manual. Trial and error method is commonly used to determine the number of hidden layer neurons, which is easily affected by human factors and is opportunistic. Relevant training parameters using default value commonly result in lower model accuracy. In this paper, a NN load forecasting model with higher accuracy was established using the actual historical load, meteorological data in Yichang, by means of the Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) improved BP algorithm which is more suitable for modeling of large or moderate size network with fast convergence. The procedures for data pre-processing and program determining the optimal number of hidden layer neurons to reduce man-made interference or contingency are presented. In order to improve generalization ability, an early termination method is used in network training. This paper proposes it is necessary to reset mu factor and the relevant learning parameters in LM training. Illustrations inform that the initial mu should be relatively larger and mu increase factor and mu decrease factor should be close to 1. The result shows that the NN intelligent forecasting model is valid and feasible.</abstract><pub>IEEE</pub><doi>10.1109/CSSS.2012.18</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467307215
ispartof 2012 International Conference on Computer Science and Service System, 2012, p.38-42
issn
language eng
recordid cdi_ieee_primary_6394256
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
BP algorithm
Load forecasting
Load modeling
Mathematical model
MATLAB
network parameters
neural network
Neurons
power system
Predictive models
Training
title SCG and LM Improved BP Neural Network Load Forecasting and Programming Network Parameter Settings and Data Preprocessing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SCG%20and%20LM%20Improved%20BP%20Neural%20Network%20Load%20Forecasting%20and%20Programming%20Network%20Parameter%20Settings%20and%20Data%20Preprocessing&rft.btitle=2012%20International%20Conference%20on%20Computer%20Science%20and%20Service%20System&rft.au=Changhao%20Xia&rft.date=2012-08&rft.spage=38&rft.epage=42&rft.pages=38-42&rft.isbn=9781467307215&rft.isbn_list=1467307211&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CSSS.2012.18&rft.eisbn=9780769547190&rft.eisbn_list=0769547192&rft_dat=%3Cieee_6IE%3E6394256%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e117728309a4a4d750ca7232fc7b3332bc49aad03e2b0237840a337735b818c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6394256&rfr_iscdi=true