Loading…
Fault-Tolerant Control Performance Comparison of Three- and Five-Phase PMSG for Marine Current Turbine Applications
This paper deals with the use of permanent magnet multiphase generators in marine current turbines with the aim to highlight their fault-tolerance. In this context, the performances and the fault-tolerant capabilities of a five-phase permanent magnet synchronous generator are evaluated within a mari...
Saved in:
Published in: | IEEE transactions on sustainable energy 2013-04, Vol.4 (2), p.425-433 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the use of permanent magnet multiphase generators in marine current turbines with the aim to highlight their fault-tolerance. In this context, the performances and the fault-tolerant capabilities of a five-phase permanent magnet synchronous generator are evaluated within a marine current turbine and compared to a classical three-phase generator. For both topologies, a robust nonlinear control strategy is adopted. The adopted control consists of an adaptive control approach that combines three strategies: a maximum power point tracking (MPPT), an optimal fault-adaptive reference current generation, and high-order sliding modes. Simulations are carried-out using a Matlab/Simulink-based marine current turbine simulator to analyze the generator performances during open-circuit faults. Conclusions are then derived regarding multiphase generators' key features for marine applications. |
---|---|
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2012.2227126 |