Loading…

Reconstruction of constellation labeling with convolutional coded data

We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search...

Full description

Saved in:
Bibliographic Details
Main Authors: Sendrier, N., Bellard, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 657
container_issue
container_start_page 653
container_title
container_volume
creator Sendrier, N.
Bellard, M.
description We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6401020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6401020</ieee_id><sourcerecordid>6401020</sourcerecordid><originalsourceid>FETCH-ieee_primary_64010203</originalsourceid><addsrcrecordid>eNp9yUsOgjAUheEaY-KLFTjpBkzaAi2MjcSxcU6ucNGaKzW0aNy9Qhw7OvnPN2HLJMvSVClt9JRFuclkok2sUiXzOYu8vwkhpBRa5WbBiiNWrvWh66tgXctdw8dGIhgPgjOSbS_8ZcN1sKejfhCgb9VY8xoCrNmsAfIY_XbFNsX-tDtsLSKWj87eoXuXOhFSKBH_1w-w7DlM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reconstruction of constellation labeling with convolutional coded data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sendrier, N. ; Bellard, M.</creator><creatorcontrib>Sendrier, N. ; Bellard, M.</creatorcontrib><description>We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.</description><identifier>ISBN: 9781467325219</identifier><identifier>ISBN: 146732521X</identifier><identifier>EISBN: 4885522676</identifier><identifier>EISBN: 9784885522673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional codes ; Error analysis ; Labeling ; Quadrature amplitude modulation ; Reconstruction algorithms ; Reflective binary codes</subject><ispartof>2012 International Symposium on Information Theory and its Applications, 2012, p.653-657</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6401020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6401020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sendrier, N.</creatorcontrib><creatorcontrib>Bellard, M.</creatorcontrib><title>Reconstruction of constellation labeling with convolutional coded data</title><title>2012 International Symposium on Information Theory and its Applications</title><addtitle>ISITA</addtitle><description>We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.</description><subject>Convolutional codes</subject><subject>Error analysis</subject><subject>Labeling</subject><subject>Quadrature amplitude modulation</subject><subject>Reconstruction algorithms</subject><subject>Reflective binary codes</subject><isbn>9781467325219</isbn><isbn>146732521X</isbn><isbn>4885522676</isbn><isbn>9784885522673</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9yUsOgjAUheEaY-KLFTjpBkzaAi2MjcSxcU6ucNGaKzW0aNy9Qhw7OvnPN2HLJMvSVClt9JRFuclkok2sUiXzOYu8vwkhpBRa5WbBiiNWrvWh66tgXctdw8dGIhgPgjOSbS_8ZcN1sKejfhCgb9VY8xoCrNmsAfIY_XbFNsX-tDtsLSKWj87eoXuXOhFSKBH_1w-w7DlM</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Sendrier, N.</creator><creator>Bellard, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Reconstruction of constellation labeling with convolutional coded data</title><author>Sendrier, N. ; Bellard, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_64010203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Convolutional codes</topic><topic>Error analysis</topic><topic>Labeling</topic><topic>Quadrature amplitude modulation</topic><topic>Reconstruction algorithms</topic><topic>Reflective binary codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Sendrier, N.</creatorcontrib><creatorcontrib>Bellard, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sendrier, N.</au><au>Bellard, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reconstruction of constellation labeling with convolutional coded data</atitle><btitle>2012 International Symposium on Information Theory and its Applications</btitle><stitle>ISITA</stitle><date>2012-10</date><risdate>2012</risdate><spage>653</spage><epage>657</epage><pages>653-657</pages><isbn>9781467325219</isbn><isbn>146732521X</isbn><eisbn>4885522676</eisbn><eisbn>9784885522673</eisbn><abstract>We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467325219
ispartof 2012 International Symposium on Information Theory and its Applications, 2012, p.653-657
issn
language eng
recordid cdi_ieee_primary_6401020
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convolutional codes
Error analysis
Labeling
Quadrature amplitude modulation
Reconstruction algorithms
Reflective binary codes
title Reconstruction of constellation labeling with convolutional coded data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reconstruction%20of%20constellation%20labeling%20with%20convolutional%20coded%20data&rft.btitle=2012%20International%20Symposium%20on%20Information%20Theory%20and%20its%20Applications&rft.au=Sendrier,%20N.&rft.date=2012-10&rft.spage=653&rft.epage=657&rft.pages=653-657&rft.isbn=9781467325219&rft.isbn_list=146732521X&rft_id=info:doi/&rft.eisbn=4885522676&rft.eisbn_list=9784885522673&rft_dat=%3Cieee_6IE%3E6401020%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_64010203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6401020&rfr_iscdi=true