Loading…
Reconstruction of constellation labeling with convolutional coded data
We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 657 |
container_issue | |
container_start_page | 653 |
container_title | |
container_volume | |
creator | Sendrier, N. Bellard, M. |
description | We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6401020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6401020</ieee_id><sourcerecordid>6401020</sourcerecordid><originalsourceid>FETCH-ieee_primary_64010203</originalsourceid><addsrcrecordid>eNp9yUsOgjAUheEaY-KLFTjpBkzaAi2MjcSxcU6ucNGaKzW0aNy9Qhw7OvnPN2HLJMvSVClt9JRFuclkok2sUiXzOYu8vwkhpBRa5WbBiiNWrvWh66tgXctdw8dGIhgPgjOSbS_8ZcN1sKejfhCgb9VY8xoCrNmsAfIY_XbFNsX-tDtsLSKWj87eoXuXOhFSKBH_1w-w7DlM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reconstruction of constellation labeling with convolutional coded data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sendrier, N. ; Bellard, M.</creator><creatorcontrib>Sendrier, N. ; Bellard, M.</creatorcontrib><description>We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.</description><identifier>ISBN: 9781467325219</identifier><identifier>ISBN: 146732521X</identifier><identifier>EISBN: 4885522676</identifier><identifier>EISBN: 9784885522673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional codes ; Error analysis ; Labeling ; Quadrature amplitude modulation ; Reconstruction algorithms ; Reflective binary codes</subject><ispartof>2012 International Symposium on Information Theory and its Applications, 2012, p.653-657</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6401020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6401020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sendrier, N.</creatorcontrib><creatorcontrib>Bellard, M.</creatorcontrib><title>Reconstruction of constellation labeling with convolutional coded data</title><title>2012 International Symposium on Information Theory and its Applications</title><addtitle>ISITA</addtitle><description>We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.</description><subject>Convolutional codes</subject><subject>Error analysis</subject><subject>Labeling</subject><subject>Quadrature amplitude modulation</subject><subject>Reconstruction algorithms</subject><subject>Reflective binary codes</subject><isbn>9781467325219</isbn><isbn>146732521X</isbn><isbn>4885522676</isbn><isbn>9784885522673</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9yUsOgjAUheEaY-KLFTjpBkzaAi2MjcSxcU6ucNGaKzW0aNy9Qhw7OvnPN2HLJMvSVClt9JRFuclkok2sUiXzOYu8vwkhpBRa5WbBiiNWrvWh66tgXctdw8dGIhgPgjOSbS_8ZcN1sKejfhCgb9VY8xoCrNmsAfIY_XbFNsX-tDtsLSKWj87eoXuXOhFSKBH_1w-w7DlM</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Sendrier, N.</creator><creator>Bellard, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Reconstruction of constellation labeling with convolutional coded data</title><author>Sendrier, N. ; Bellard, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_64010203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Convolutional codes</topic><topic>Error analysis</topic><topic>Labeling</topic><topic>Quadrature amplitude modulation</topic><topic>Reconstruction algorithms</topic><topic>Reflective binary codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Sendrier, N.</creatorcontrib><creatorcontrib>Bellard, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sendrier, N.</au><au>Bellard, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reconstruction of constellation labeling with convolutional coded data</atitle><btitle>2012 International Symposium on Information Theory and its Applications</btitle><stitle>ISITA</stitle><date>2012-10</date><risdate>2012</risdate><spage>653</spage><epage>657</epage><pages>653-657</pages><isbn>9781467325219</isbn><isbn>146732521X</isbn><eisbn>4885522676</eisbn><eisbn>9784885522673</eisbn><abstract>We propose here an algorithm for reconstructing an unknown constellation labeling. Our method assumes that the underlying error correcting code is a convolutional code. We define the notions of linear and affine equivalence among labelings. Those notions will help us to reduce the cost of the search. We show that the search is intractable with our method as the constellation size grows. In that case we restrict the search to Gray labelings. Our algorithm adapts very well to that constraint and allows an easy reconstruction up to a constellation of 256 points.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467325219 |
ispartof | 2012 International Symposium on Information Theory and its Applications, 2012, p.653-657 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6401020 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Convolutional codes Error analysis Labeling Quadrature amplitude modulation Reconstruction algorithms Reflective binary codes |
title | Reconstruction of constellation labeling with convolutional coded data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reconstruction%20of%20constellation%20labeling%20with%20convolutional%20coded%20data&rft.btitle=2012%20International%20Symposium%20on%20Information%20Theory%20and%20its%20Applications&rft.au=Sendrier,%20N.&rft.date=2012-10&rft.spage=653&rft.epage=657&rft.pages=653-657&rft.isbn=9781467325219&rft.isbn_list=146732521X&rft_id=info:doi/&rft.eisbn=4885522676&rft.eisbn_list=9784885522673&rft_dat=%3Cieee_6IE%3E6401020%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_64010203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6401020&rfr_iscdi=true |