Loading…

A zero-attracting variable step-size LMS algorithm for sparse system identification

In this paper, new adaptive algorithms are proposed to improve the performance of the variable step-size LMS (VSSLMS) algorithm when the system is sparse. The first proposed algorithm is the zero-attracting (ZA) VSSLMS. This algorithm outperforms the standard VSSLMS if the system is highly sparse. H...

Full description

Saved in:
Bibliographic Details
Main Authors: Salman, Mohammad Shukri, Jahromi, M. N. S., Hocanin, A., Kukrer, O.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Salman, Mohammad Shukri
Jahromi, M. N. S.
Hocanin, A.
Kukrer, O.
description In this paper, new adaptive algorithms are proposed to improve the performance of the variable step-size LMS (VSSLMS) algorithm when the system is sparse. The first proposed algorithm is the zero-attracting (ZA) VSSLMS. This algorithm outperforms the standard VSSLMS if the system is highly sparse. However, the performance of the ZA-VSSLMS algorithm deteriorates when the sparsity of the system decreases. To further improve the performance of the ZA-VSSLMS filter, the weighted zero-attracting (WZA)-VSSLMS algorithm is introduced. The algorithm performs the same or better than the ZA-VSSLMS if the system is highly sparse. On the other hand, when the sparsity of the system decreases, it performs better than the ZA-VSSLMS and better or the same as the standard VSSLMS algorithm. Also, both proposed algorithms have the same order of computational complexity as that of the VSSLMS algorithm (O(N)). For a system identification setting, the results indicate the high performance of the proposed algorithms in convergence speed and/or steady-state error under sparsity condition compared with the standard VSSLMS algorithm.
doi_str_mv 10.1109/BIHTEL.2012.6412087
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6412087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6412087</ieee_id><sourcerecordid>6412087</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-4aa2b4397e3f1ea05f04d53a8dd5d59066280f30d5063bc6d0d9a0b0c4bba93f3</originalsourceid><addsrcrecordid>eNo1kM1KAzEUhSMiqLVP0E1eYMabv5nJspZqCyMuWtflZpLUSNsZkiC0T--AdXU48H1ncQiZMSgZA_38sl5tl23JgfGykoxDU9-Qqa4bJqtayKaW8pY8_hel78k0pW8AGO0alH4gmzm9uNgXmHPELofTnv5gDGgOjqbshiKFi6Pt-4biYd_HkL-O1PeRpgFjGpHzCB1psO6Ugw8d5tCfnsidx0Ny02tOyOfrcrtYFe3H23oxb4vAOeRCInIjha6d8MwhKA_SKoGNtcoqDVXFG_ACrIJKmK6yYDWCgU4ag1p4MSGzv93gnNsNMRwxnnfXH8QvZuRSkQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A zero-attracting variable step-size LMS algorithm for sparse system identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Salman, Mohammad Shukri ; Jahromi, M. N. S. ; Hocanin, A. ; Kukrer, O.</creator><creatorcontrib>Salman, Mohammad Shukri ; Jahromi, M. N. S. ; Hocanin, A. ; Kukrer, O.</creatorcontrib><description>In this paper, new adaptive algorithms are proposed to improve the performance of the variable step-size LMS (VSSLMS) algorithm when the system is sparse. The first proposed algorithm is the zero-attracting (ZA) VSSLMS. This algorithm outperforms the standard VSSLMS if the system is highly sparse. However, the performance of the ZA-VSSLMS algorithm deteriorates when the sparsity of the system decreases. To further improve the performance of the ZA-VSSLMS filter, the weighted zero-attracting (WZA)-VSSLMS algorithm is introduced. The algorithm performs the same or better than the ZA-VSSLMS if the system is highly sparse. On the other hand, when the sparsity of the system decreases, it performs better than the ZA-VSSLMS and better or the same as the standard VSSLMS algorithm. Also, both proposed algorithms have the same order of computational complexity as that of the VSSLMS algorithm (O(N)). For a system identification setting, the results indicate the high performance of the proposed algorithms in convergence speed and/or steady-state error under sparsity condition compared with the standard VSSLMS algorithm.</description><identifier>ISBN: 1467348759</identifier><identifier>ISBN: 9781467348751</identifier><identifier>EISBN: 9781467348744</identifier><identifier>EISBN: 1467348740</identifier><identifier>EISBN: 1467348767</identifier><identifier>EISBN: 9781467348768</identifier><identifier>DOI: 10.1109/BIHTEL.2012.6412087</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Cost function ; Least squares approximation ; Signal processing algorithms ; Steady-state ; Vectors</subject><ispartof>2012 IX International Symposium on Telecommunications (BIHTEL), 2012, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6412087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6412087$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Salman, Mohammad Shukri</creatorcontrib><creatorcontrib>Jahromi, M. N. S.</creatorcontrib><creatorcontrib>Hocanin, A.</creatorcontrib><creatorcontrib>Kukrer, O.</creatorcontrib><title>A zero-attracting variable step-size LMS algorithm for sparse system identification</title><title>2012 IX International Symposium on Telecommunications (BIHTEL)</title><addtitle>BIHTEL</addtitle><description>In this paper, new adaptive algorithms are proposed to improve the performance of the variable step-size LMS (VSSLMS) algorithm when the system is sparse. The first proposed algorithm is the zero-attracting (ZA) VSSLMS. This algorithm outperforms the standard VSSLMS if the system is highly sparse. However, the performance of the ZA-VSSLMS algorithm deteriorates when the sparsity of the system decreases. To further improve the performance of the ZA-VSSLMS filter, the weighted zero-attracting (WZA)-VSSLMS algorithm is introduced. The algorithm performs the same or better than the ZA-VSSLMS if the system is highly sparse. On the other hand, when the sparsity of the system decreases, it performs better than the ZA-VSSLMS and better or the same as the standard VSSLMS algorithm. Also, both proposed algorithms have the same order of computational complexity as that of the VSSLMS algorithm (O(N)). For a system identification setting, the results indicate the high performance of the proposed algorithms in convergence speed and/or steady-state error under sparsity condition compared with the standard VSSLMS algorithm.</description><subject>Convergence</subject><subject>Cost function</subject><subject>Least squares approximation</subject><subject>Signal processing algorithms</subject><subject>Steady-state</subject><subject>Vectors</subject><isbn>1467348759</isbn><isbn>9781467348751</isbn><isbn>9781467348744</isbn><isbn>1467348740</isbn><isbn>1467348767</isbn><isbn>9781467348768</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1KAzEUhSMiqLVP0E1eYMabv5nJspZqCyMuWtflZpLUSNsZkiC0T--AdXU48H1ncQiZMSgZA_38sl5tl23JgfGykoxDU9-Qqa4bJqtayKaW8pY8_hel78k0pW8AGO0alH4gmzm9uNgXmHPELofTnv5gDGgOjqbshiKFi6Pt-4biYd_HkL-O1PeRpgFjGpHzCB1psO6Ugw8d5tCfnsidx0Ny02tOyOfrcrtYFe3H23oxb4vAOeRCInIjha6d8MwhKA_SKoGNtcoqDVXFG_ACrIJKmK6yYDWCgU4ag1p4MSGzv93gnNsNMRwxnnfXH8QvZuRSkQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Salman, Mohammad Shukri</creator><creator>Jahromi, M. N. S.</creator><creator>Hocanin, A.</creator><creator>Kukrer, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>A zero-attracting variable step-size LMS algorithm for sparse system identification</title><author>Salman, Mohammad Shukri ; Jahromi, M. N. S. ; Hocanin, A. ; Kukrer, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-4aa2b4397e3f1ea05f04d53a8dd5d59066280f30d5063bc6d0d9a0b0c4bba93f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Convergence</topic><topic>Cost function</topic><topic>Least squares approximation</topic><topic>Signal processing algorithms</topic><topic>Steady-state</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Salman, Mohammad Shukri</creatorcontrib><creatorcontrib>Jahromi, M. N. S.</creatorcontrib><creatorcontrib>Hocanin, A.</creatorcontrib><creatorcontrib>Kukrer, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salman, Mohammad Shukri</au><au>Jahromi, M. N. S.</au><au>Hocanin, A.</au><au>Kukrer, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A zero-attracting variable step-size LMS algorithm for sparse system identification</atitle><btitle>2012 IX International Symposium on Telecommunications (BIHTEL)</btitle><stitle>BIHTEL</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1467348759</isbn><isbn>9781467348751</isbn><eisbn>9781467348744</eisbn><eisbn>1467348740</eisbn><eisbn>1467348767</eisbn><eisbn>9781467348768</eisbn><abstract>In this paper, new adaptive algorithms are proposed to improve the performance of the variable step-size LMS (VSSLMS) algorithm when the system is sparse. The first proposed algorithm is the zero-attracting (ZA) VSSLMS. This algorithm outperforms the standard VSSLMS if the system is highly sparse. However, the performance of the ZA-VSSLMS algorithm deteriorates when the sparsity of the system decreases. To further improve the performance of the ZA-VSSLMS filter, the weighted zero-attracting (WZA)-VSSLMS algorithm is introduced. The algorithm performs the same or better than the ZA-VSSLMS if the system is highly sparse. On the other hand, when the sparsity of the system decreases, it performs better than the ZA-VSSLMS and better or the same as the standard VSSLMS algorithm. Also, both proposed algorithms have the same order of computational complexity as that of the VSSLMS algorithm (O(N)). For a system identification setting, the results indicate the high performance of the proposed algorithms in convergence speed and/or steady-state error under sparsity condition compared with the standard VSSLMS algorithm.</abstract><pub>IEEE</pub><doi>10.1109/BIHTEL.2012.6412087</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467348759
ispartof 2012 IX International Symposium on Telecommunications (BIHTEL), 2012, p.1-4
issn
language eng
recordid cdi_ieee_primary_6412087
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Cost function
Least squares approximation
Signal processing algorithms
Steady-state
Vectors
title A zero-attracting variable step-size LMS algorithm for sparse system identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20zero-attracting%20variable%20step-size%20LMS%20algorithm%20for%20sparse%20system%20identification&rft.btitle=2012%20IX%20International%20Symposium%20on%20Telecommunications%20(BIHTEL)&rft.au=Salman,%20Mohammad%20Shukri&rft.date=2012-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1467348759&rft.isbn_list=9781467348751&rft_id=info:doi/10.1109/BIHTEL.2012.6412087&rft.eisbn=9781467348744&rft.eisbn_list=1467348740&rft.eisbn_list=1467348767&rft.eisbn_list=9781467348768&rft_dat=%3Cieee_6IE%3E6412087%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-4aa2b4397e3f1ea05f04d53a8dd5d59066280f30d5063bc6d0d9a0b0c4bba93f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6412087&rfr_iscdi=true