Loading…
Biometric Authentication Using Mouse Gesture Dynamics
The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have...
Saved in:
Published in: | IEEE systems journal 2013-06, Vol.7 (2), p.262-274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3 |
container_end_page | 274 |
container_issue | 2 |
container_start_page | 262 |
container_title | IEEE systems journal |
container_volume | 7 |
creator | Sayed, B. Traore, I. Woungang, I. Obaidat, M. S. |
description | The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics. |
doi_str_mv | 10.1109/JSYST.2012.2221932 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6416916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6416916</ieee_id><sourcerecordid>1365158782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EEqXwB2CJxMKS4mvHr7EUKKAihrYDk5U4Drhqk2InQ_897kMMTJ3OHb5zde49CF0DHgBgdf82_ZzOBgQDGRBCQFFygnpRRKoIzU53M0klyOwcXYSwwJhJJlQPsQfXrGzrnUmGXftt69aZvHVNncyDq7-S96YLNhnb0HbeJo-bOl85Ey7RWZUvg706aB_Nn59mo5d08jF-HQ0nqck4btNCYZJjXhCT4UIZDIIyWgigpioMrkyWSWOlKknJFTDDOSfMMF4CL8ASWdI-utvvXfvmp4sh9MoFY5fLvLYxmAbKGTAFmB6JSiHJkaiQkkf09h-6aDpfx5sjRSXEM4WIFNlTxjcheFvptXer3G80YL3tR-_60dt-9KGfaLrZm5y19s_AM4i_4PQXy-KJag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1338146077</pqid></control><display><type>article</type><title>Biometric Authentication Using Mouse Gesture Dynamics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sayed, B. ; Traore, I. ; Woungang, I. ; Obaidat, M. S.</creator><creatorcontrib>Sayed, B. ; Traore, I. ; Woungang, I. ; Obaidat, M. S.</creatorcontrib><description>The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2012.2221932</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceptance tests ; Authentication ; Behavioral biometrics ; biometric authentication ; Biometrics ; Biometrics (access control) ; Computer peripherals ; Computer security ; Dynamic tests ; Dynamical systems ; Dynamics ; Graphical user interfaces ; identity verification ; mouse dynamics ; Neural networks ; Pattern classification ; Software ; Studies ; Vector quantization</subject><ispartof>IEEE systems journal, 2013-06, Vol.7 (2), p.262-274</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</citedby><cites>FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6416916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sayed, B.</creatorcontrib><creatorcontrib>Traore, I.</creatorcontrib><creatorcontrib>Woungang, I.</creatorcontrib><creatorcontrib>Obaidat, M. S.</creatorcontrib><title>Biometric Authentication Using Mouse Gesture Dynamics</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.</description><subject>Acceptance tests</subject><subject>Authentication</subject><subject>Behavioral biometrics</subject><subject>biometric authentication</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Computer peripherals</subject><subject>Computer security</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Graphical user interfaces</subject><subject>identity verification</subject><subject>mouse dynamics</subject><subject>Neural networks</subject><subject>Pattern classification</subject><subject>Software</subject><subject>Studies</subject><subject>Vector quantization</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPwzAUhS0EEqXwB2CJxMKS4mvHr7EUKKAihrYDk5U4Drhqk2InQ_897kMMTJ3OHb5zde49CF0DHgBgdf82_ZzOBgQDGRBCQFFygnpRRKoIzU53M0klyOwcXYSwwJhJJlQPsQfXrGzrnUmGXftt69aZvHVNncyDq7-S96YLNhnb0HbeJo-bOl85Ey7RWZUvg706aB_Nn59mo5d08jF-HQ0nqck4btNCYZJjXhCT4UIZDIIyWgigpioMrkyWSWOlKknJFTDDOSfMMF4CL8ASWdI-utvvXfvmp4sh9MoFY5fLvLYxmAbKGTAFmB6JSiHJkaiQkkf09h-6aDpfx5sjRSXEM4WIFNlTxjcheFvptXer3G80YL3tR-_60dt-9KGfaLrZm5y19s_AM4i_4PQXy-KJag</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sayed, B.</creator><creator>Traore, I.</creator><creator>Woungang, I.</creator><creator>Obaidat, M. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Biometric Authentication Using Mouse Gesture Dynamics</title><author>Sayed, B. ; Traore, I. ; Woungang, I. ; Obaidat, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceptance tests</topic><topic>Authentication</topic><topic>Behavioral biometrics</topic><topic>biometric authentication</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Computer peripherals</topic><topic>Computer security</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Graphical user interfaces</topic><topic>identity verification</topic><topic>mouse dynamics</topic><topic>Neural networks</topic><topic>Pattern classification</topic><topic>Software</topic><topic>Studies</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, B.</creatorcontrib><creatorcontrib>Traore, I.</creatorcontrib><creatorcontrib>Woungang, I.</creatorcontrib><creatorcontrib>Obaidat, M. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, B.</au><au>Traore, I.</au><au>Woungang, I.</au><au>Obaidat, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biometric Authentication Using Mouse Gesture Dynamics</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>262</spage><epage>274</epage><pages>262-274</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2012.2221932</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2013-06, Vol.7 (2), p.262-274 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_ieee_primary_6416916 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acceptance tests Authentication Behavioral biometrics biometric authentication Biometrics Biometrics (access control) Computer peripherals Computer security Dynamic tests Dynamical systems Dynamics Graphical user interfaces identity verification mouse dynamics Neural networks Pattern classification Software Studies Vector quantization |
title | Biometric Authentication Using Mouse Gesture Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biometric%20Authentication%20Using%20Mouse%20Gesture%20Dynamics&rft.jtitle=IEEE%20systems%20journal&rft.au=Sayed,%20B.&rft.date=2013-06-01&rft.volume=7&rft.issue=2&rft.spage=262&rft.epage=274&rft.pages=262-274&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2012.2221932&rft_dat=%3Cproquest_ieee_%3E1365158782%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1338146077&rft_id=info:pmid/&rft_ieee_id=6416916&rfr_iscdi=true |