Loading…

Biometric Authentication Using Mouse Gesture Dynamics

The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have...

Full description

Saved in:
Bibliographic Details
Published in:IEEE systems journal 2013-06, Vol.7 (2), p.262-274
Main Authors: Sayed, B., Traore, I., Woungang, I., Obaidat, M. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3
cites cdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3
container_end_page 274
container_issue 2
container_start_page 262
container_title IEEE systems journal
container_volume 7
creator Sayed, B.
Traore, I.
Woungang, I.
Obaidat, M. S.
description The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.
doi_str_mv 10.1109/JSYST.2012.2221932
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6416916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6416916</ieee_id><sourcerecordid>1365158782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EEqXwB2CJxMKS4mvHr7EUKKAihrYDk5U4Drhqk2InQ_897kMMTJ3OHb5zde49CF0DHgBgdf82_ZzOBgQDGRBCQFFygnpRRKoIzU53M0klyOwcXYSwwJhJJlQPsQfXrGzrnUmGXftt69aZvHVNncyDq7-S96YLNhnb0HbeJo-bOl85Ey7RWZUvg706aB_Nn59mo5d08jF-HQ0nqck4btNCYZJjXhCT4UIZDIIyWgigpioMrkyWSWOlKknJFTDDOSfMMF4CL8ASWdI-utvvXfvmp4sh9MoFY5fLvLYxmAbKGTAFmB6JSiHJkaiQkkf09h-6aDpfx5sjRSXEM4WIFNlTxjcheFvptXer3G80YL3tR-_60dt-9KGfaLrZm5y19s_AM4i_4PQXy-KJag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1338146077</pqid></control><display><type>article</type><title>Biometric Authentication Using Mouse Gesture Dynamics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sayed, B. ; Traore, I. ; Woungang, I. ; Obaidat, M. S.</creator><creatorcontrib>Sayed, B. ; Traore, I. ; Woungang, I. ; Obaidat, M. S.</creatorcontrib><description>The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2012.2221932</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceptance tests ; Authentication ; Behavioral biometrics ; biometric authentication ; Biometrics ; Biometrics (access control) ; Computer peripherals ; Computer security ; Dynamic tests ; Dynamical systems ; Dynamics ; Graphical user interfaces ; identity verification ; mouse dynamics ; Neural networks ; Pattern classification ; Software ; Studies ; Vector quantization</subject><ispartof>IEEE systems journal, 2013-06, Vol.7 (2), p.262-274</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</citedby><cites>FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6416916$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sayed, B.</creatorcontrib><creatorcontrib>Traore, I.</creatorcontrib><creatorcontrib>Woungang, I.</creatorcontrib><creatorcontrib>Obaidat, M. S.</creatorcontrib><title>Biometric Authentication Using Mouse Gesture Dynamics</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.</description><subject>Acceptance tests</subject><subject>Authentication</subject><subject>Behavioral biometrics</subject><subject>biometric authentication</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Computer peripherals</subject><subject>Computer security</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Graphical user interfaces</subject><subject>identity verification</subject><subject>mouse dynamics</subject><subject>Neural networks</subject><subject>Pattern classification</subject><subject>Software</subject><subject>Studies</subject><subject>Vector quantization</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPwzAUhS0EEqXwB2CJxMKS4mvHr7EUKKAihrYDk5U4Drhqk2InQ_897kMMTJ3OHb5zde49CF0DHgBgdf82_ZzOBgQDGRBCQFFygnpRRKoIzU53M0klyOwcXYSwwJhJJlQPsQfXrGzrnUmGXftt69aZvHVNncyDq7-S96YLNhnb0HbeJo-bOl85Ey7RWZUvg706aB_Nn59mo5d08jF-HQ0nqck4btNCYZJjXhCT4UIZDIIyWgigpioMrkyWSWOlKknJFTDDOSfMMF4CL8ASWdI-utvvXfvmp4sh9MoFY5fLvLYxmAbKGTAFmB6JSiHJkaiQkkf09h-6aDpfx5sjRSXEM4WIFNlTxjcheFvptXer3G80YL3tR-_60dt-9KGfaLrZm5y19s_AM4i_4PQXy-KJag</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sayed, B.</creator><creator>Traore, I.</creator><creator>Woungang, I.</creator><creator>Obaidat, M. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130601</creationdate><title>Biometric Authentication Using Mouse Gesture Dynamics</title><author>Sayed, B. ; Traore, I. ; Woungang, I. ; Obaidat, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceptance tests</topic><topic>Authentication</topic><topic>Behavioral biometrics</topic><topic>biometric authentication</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Computer peripherals</topic><topic>Computer security</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Graphical user interfaces</topic><topic>identity verification</topic><topic>mouse dynamics</topic><topic>Neural networks</topic><topic>Pattern classification</topic><topic>Software</topic><topic>Studies</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, B.</creatorcontrib><creatorcontrib>Traore, I.</creatorcontrib><creatorcontrib>Woungang, I.</creatorcontrib><creatorcontrib>Obaidat, M. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, B.</au><au>Traore, I.</au><au>Woungang, I.</au><au>Obaidat, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biometric Authentication Using Mouse Gesture Dynamics</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>262</spage><epage>274</epage><pages>262-274</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>The mouse dynamics biometric is a behavioral biometric technology that extracts and analyzes the movement characteristics of the mouse input device when a computer user interacts with a graphical user interface for identification purposes. Most of the existing studies on mouse dynamics analysis have targeted primarily continuous authentication or user reauthentication for which promising results have been achieved. Static authentication (at login time) using mouse dynamics, however, appears to face some challenges due to the limited amount of data that can reasonably be captured during such a process. In this paper, we present a new mouse dynamics analysis framework that uses mouse gesture dynamics for static authentication. The captured gestures are analyzed using a learning vector quantization neural network classifier. We conduct an experimental evaluation of our framework with 39 users, in which we achieve a false acceptance ratio of 5.26% and a false rejection ratio of 4.59% when four gestures were combined, with a test session length of 26.9 s. This is an improvement both in the accuracy and validation sample, compared to the existing mouse dynamics approaches that could be considered adequate for static authentication. Furthermore, to our knowledge, our work is the first to present a relatively accurate static authentication scheme based on mouse gesture dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2012.2221932</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2013-06, Vol.7 (2), p.262-274
issn 1932-8184
1937-9234
language eng
recordid cdi_ieee_primary_6416916
source IEEE Electronic Library (IEL) Journals
subjects Acceptance tests
Authentication
Behavioral biometrics
biometric authentication
Biometrics
Biometrics (access control)
Computer peripherals
Computer security
Dynamic tests
Dynamical systems
Dynamics
Graphical user interfaces
identity verification
mouse dynamics
Neural networks
Pattern classification
Software
Studies
Vector quantization
title Biometric Authentication Using Mouse Gesture Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biometric%20Authentication%20Using%20Mouse%20Gesture%20Dynamics&rft.jtitle=IEEE%20systems%20journal&rft.au=Sayed,%20B.&rft.date=2013-06-01&rft.volume=7&rft.issue=2&rft.spage=262&rft.epage=274&rft.pages=262-274&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2012.2221932&rft_dat=%3Cproquest_ieee_%3E1365158782%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-b902a06b2c40b9c017353b713cfbc0fc448ce89d2d6915c66625c56d16b1e28d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1338146077&rft_id=info:pmid/&rft_ieee_id=6416916&rfr_iscdi=true