Loading…
Estimating Wind Stress at the Ocean Surface From Scatterometer Observations
Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2013-09, Vol.10 (5), p.1129-1132 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2012.2231937 |