Loading…
Tuning the spectral sensitivity of vertical InN nanopyramid based photodetectors by means of band gap engineering and/or nanostructure size control
We fabricated and tested InN nanopyramid based photodetectors designed for operation in the telecommunication-wavelength range. We found that the spectral sensitivity of InN photodetectors can be engineered by their size and by the strain interaction with the masked SiO 2 /GaN substrates. The band e...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We fabricated and tested InN nanopyramid based photodetectors designed for operation in the telecommunication-wavelength range. We found that the spectral sensitivity of InN photodetectors can be engineered by their size and by the strain interaction with the masked SiO 2 /GaN substrates. The band edge luminescence energy of the InN nanopyramids depends linearly on the structure size. Furthermore, InN nanopyramid based photodetectors exhibit a low device RC constant, low dark currents below 1 nA, as well as a responsivity of ~ 0.2 A/W at 1550 nm wavelength. InN nanopyramid based photodetectors are very promising candidates for high-speed optoelectronics within the telecommunication wavelength range. |
---|---|
DOI: | 10.1109/ASDAM.2012.6418527 |