Loading…

Probabilistic model for minor component analysis based on born rule

Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realiz...

Full description

Saved in:
Bibliographic Details
Main Authors: Jankovic, M. V., Manic, M., Relijn, B. D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 88
container_issue
container_start_page 85
container_title
container_volume
creator Jankovic, M. V.
Manic, M.
Relijn, B. D.
description Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.
doi_str_mv 10.1109/NEUREL.2012.6419971
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6419971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6419971</ieee_id><sourcerecordid>6419971</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-21595e398ed319dc91a397fc3fbfd31df8ccd4fa6c1fc3ffd8c84aa6eb9aaed33</originalsourceid><addsrcrecordid>eNpNT81KxDAYjIigrH2CveQFWvMlbdIcZak_UFYR97zkFyJtsiT1sG9vxT14mWEGZphBaAukASDyYT8cPoaxoQRow1uQUsAVqqTooeWCQScovf6vuaS3qCrlixCyFnAmxR3aveeklQ5TKEsweE7WTdinjOcQVzRpPqXo4oJVVNO5hIK1Ks7iFLFOOeL8Pbl7dOPVVFx14Q06PA2fu5d6fHt-3T2OdQDRLTWFTnaOyd5ZBtIaCWqd4A3z2q-O9b0xtvWKG_g1ve1N3yrFnZZKrRm2Qdu_3uCcO55ymFU-Hy_X2Q-9Qk75</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic model for minor component analysis based on born rule</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jankovic, M. V. ; Manic, M. ; Relijn, B. D.</creator><creatorcontrib>Jankovic, M. V. ; Manic, M. ; Relijn, B. D.</creatorcontrib><description>Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.</description><identifier>ISBN: 9781467315692</identifier><identifier>ISBN: 1467315699</identifier><identifier>EISBN: 9781467315722</identifier><identifier>EISBN: 1467315729</identifier><identifier>EISBN: 9781467315715</identifier><identifier>EISBN: 1467315710</identifier><identifier>DOI: 10.1109/NEUREL.2012.6419971</identifier><language>eng</language><publisher>IEEE</publisher><subject>Born rule ; Decision support systems ; Minor component analysis ; parallel hardware ; time-oriented hierarchical learning ; Tin</subject><ispartof>11th Symposium on Neural Network Applications in Electrical Engineering, 2012, p.85-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6419971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27899,54892</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6419971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jankovic, M. V.</creatorcontrib><creatorcontrib>Manic, M.</creatorcontrib><creatorcontrib>Relijn, B. D.</creatorcontrib><title>Probabilistic model for minor component analysis based on born rule</title><title>11th Symposium on Neural Network Applications in Electrical Engineering</title><addtitle>NEUREL</addtitle><description>Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.</description><subject>Born rule</subject><subject>Decision support systems</subject><subject>Minor component analysis</subject><subject>parallel hardware</subject><subject>time-oriented hierarchical learning</subject><subject>Tin</subject><isbn>9781467315692</isbn><isbn>1467315699</isbn><isbn>9781467315722</isbn><isbn>1467315729</isbn><isbn>9781467315715</isbn><isbn>1467315710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNT81KxDAYjIigrH2CveQFWvMlbdIcZak_UFYR97zkFyJtsiT1sG9vxT14mWEGZphBaAukASDyYT8cPoaxoQRow1uQUsAVqqTooeWCQScovf6vuaS3qCrlixCyFnAmxR3aveeklQ5TKEsweE7WTdinjOcQVzRpPqXo4oJVVNO5hIK1Ks7iFLFOOeL8Pbl7dOPVVFx14Q06PA2fu5d6fHt-3T2OdQDRLTWFTnaOyd5ZBtIaCWqd4A3z2q-O9b0xtvWKG_g1ve1N3yrFnZZKrRm2Qdu_3uCcO55ymFU-Hy_X2Q-9Qk75</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jankovic, M. V.</creator><creator>Manic, M.</creator><creator>Relijn, B. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Probabilistic model for minor component analysis based on born rule</title><author>Jankovic, M. V. ; Manic, M. ; Relijn, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-21595e398ed319dc91a397fc3fbfd31df8ccd4fa6c1fc3ffd8c84aa6eb9aaed33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Born rule</topic><topic>Decision support systems</topic><topic>Minor component analysis</topic><topic>parallel hardware</topic><topic>time-oriented hierarchical learning</topic><topic>Tin</topic><toplevel>online_resources</toplevel><creatorcontrib>Jankovic, M. V.</creatorcontrib><creatorcontrib>Manic, M.</creatorcontrib><creatorcontrib>Relijn, B. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jankovic, M. V.</au><au>Manic, M.</au><au>Relijn, B. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic model for minor component analysis based on born rule</atitle><btitle>11th Symposium on Neural Network Applications in Electrical Engineering</btitle><stitle>NEUREL</stitle><date>2012-09</date><risdate>2012</risdate><spage>85</spage><epage>88</epage><pages>85-88</pages><isbn>9781467315692</isbn><isbn>1467315699</isbn><eisbn>9781467315722</eisbn><eisbn>1467315729</eisbn><eisbn>9781467315715</eisbn><eisbn>1467315710</eisbn><abstract>Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.</abstract><pub>IEEE</pub><doi>10.1109/NEUREL.2012.6419971</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467315692
ispartof 11th Symposium on Neural Network Applications in Electrical Engineering, 2012, p.85-88
issn
language eng
recordid cdi_ieee_primary_6419971
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Born rule
Decision support systems
Minor component analysis
parallel hardware
time-oriented hierarchical learning
Tin
title Probabilistic model for minor component analysis based on born rule
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T23%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20model%20for%20minor%20component%20analysis%20based%20on%20born%20rule&rft.btitle=11th%20Symposium%20on%20Neural%20Network%20Applications%20in%20Electrical%20Engineering&rft.au=Jankovic,%20M.%20V.&rft.date=2012-09&rft.spage=85&rft.epage=88&rft.pages=85-88&rft.isbn=9781467315692&rft.isbn_list=1467315699&rft_id=info:doi/10.1109/NEUREL.2012.6419971&rft.eisbn=9781467315722&rft.eisbn_list=1467315729&rft.eisbn_list=9781467315715&rft.eisbn_list=1467315710&rft_dat=%3Cieee_6IE%3E6419971%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-21595e398ed319dc91a397fc3fbfd31df8ccd4fa6c1fc3ffd8c84aa6eb9aaed33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6419971&rfr_iscdi=true