Loading…
Probabilistic model for minor component analysis based on born rule
Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realiz...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 88 |
container_issue | |
container_start_page | 85 |
container_title | |
container_volume | |
creator | Jankovic, M. V. Manic, M. Relijn, B. D. |
description | Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest. |
doi_str_mv | 10.1109/NEUREL.2012.6419971 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6419971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6419971</ieee_id><sourcerecordid>6419971</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-21595e398ed319dc91a397fc3fbfd31df8ccd4fa6c1fc3ffd8c84aa6eb9aaed33</originalsourceid><addsrcrecordid>eNpNT81KxDAYjIigrH2CveQFWvMlbdIcZak_UFYR97zkFyJtsiT1sG9vxT14mWEGZphBaAukASDyYT8cPoaxoQRow1uQUsAVqqTooeWCQScovf6vuaS3qCrlixCyFnAmxR3aveeklQ5TKEsweE7WTdinjOcQVzRpPqXo4oJVVNO5hIK1Ks7iFLFOOeL8Pbl7dOPVVFx14Q06PA2fu5d6fHt-3T2OdQDRLTWFTnaOyd5ZBtIaCWqd4A3z2q-O9b0xtvWKG_g1ve1N3yrFnZZKrRm2Qdu_3uCcO55ymFU-Hy_X2Q-9Qk75</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic model for minor component analysis based on born rule</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jankovic, M. V. ; Manic, M. ; Relijn, B. D.</creator><creatorcontrib>Jankovic, M. V. ; Manic, M. ; Relijn, B. D.</creatorcontrib><description>Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.</description><identifier>ISBN: 9781467315692</identifier><identifier>ISBN: 1467315699</identifier><identifier>EISBN: 9781467315722</identifier><identifier>EISBN: 1467315729</identifier><identifier>EISBN: 9781467315715</identifier><identifier>EISBN: 1467315710</identifier><identifier>DOI: 10.1109/NEUREL.2012.6419971</identifier><language>eng</language><publisher>IEEE</publisher><subject>Born rule ; Decision support systems ; Minor component analysis ; parallel hardware ; time-oriented hierarchical learning ; Tin</subject><ispartof>11th Symposium on Neural Network Applications in Electrical Engineering, 2012, p.85-88</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6419971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27899,54892</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6419971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jankovic, M. V.</creatorcontrib><creatorcontrib>Manic, M.</creatorcontrib><creatorcontrib>Relijn, B. D.</creatorcontrib><title>Probabilistic model for minor component analysis based on born rule</title><title>11th Symposium on Neural Network Applications in Electrical Engineering</title><addtitle>NEUREL</addtitle><description>Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.</description><subject>Born rule</subject><subject>Decision support systems</subject><subject>Minor component analysis</subject><subject>parallel hardware</subject><subject>time-oriented hierarchical learning</subject><subject>Tin</subject><isbn>9781467315692</isbn><isbn>1467315699</isbn><isbn>9781467315722</isbn><isbn>1467315729</isbn><isbn>9781467315715</isbn><isbn>1467315710</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNT81KxDAYjIigrH2CveQFWvMlbdIcZak_UFYR97zkFyJtsiT1sG9vxT14mWEGZphBaAukASDyYT8cPoaxoQRow1uQUsAVqqTooeWCQScovf6vuaS3qCrlixCyFnAmxR3aveeklQ5TKEsweE7WTdinjOcQVzRpPqXo4oJVVNO5hIK1Ks7iFLFOOeL8Pbl7dOPVVFx14Q06PA2fu5d6fHt-3T2OdQDRLTWFTnaOyd5ZBtIaCWqd4A3z2q-O9b0xtvWKG_g1ve1N3yrFnZZKrRm2Qdu_3uCcO55ymFU-Hy_X2Q-9Qk75</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jankovic, M. V.</creator><creator>Manic, M.</creator><creator>Relijn, B. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Probabilistic model for minor component analysis based on born rule</title><author>Jankovic, M. V. ; Manic, M. ; Relijn, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-21595e398ed319dc91a397fc3fbfd31df8ccd4fa6c1fc3ffd8c84aa6eb9aaed33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Born rule</topic><topic>Decision support systems</topic><topic>Minor component analysis</topic><topic>parallel hardware</topic><topic>time-oriented hierarchical learning</topic><topic>Tin</topic><toplevel>online_resources</toplevel><creatorcontrib>Jankovic, M. V.</creatorcontrib><creatorcontrib>Manic, M.</creatorcontrib><creatorcontrib>Relijn, B. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jankovic, M. V.</au><au>Manic, M.</au><au>Relijn, B. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic model for minor component analysis based on born rule</atitle><btitle>11th Symposium on Neural Network Applications in Electrical Engineering</btitle><stitle>NEUREL</stitle><date>2012-09</date><risdate>2012</risdate><spage>85</spage><epage>88</epage><pages>85-88</pages><isbn>9781467315692</isbn><isbn>1467315699</isbn><eisbn>9781467315722</eisbn><eisbn>1467315729</eisbn><eisbn>9781467315715</eisbn><eisbn>1467315710</eisbn><abstract>Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.</abstract><pub>IEEE</pub><doi>10.1109/NEUREL.2012.6419971</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467315692 |
ispartof | 11th Symposium on Neural Network Applications in Electrical Engineering, 2012, p.85-88 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6419971 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Born rule Decision support systems Minor component analysis parallel hardware time-oriented hierarchical learning Tin |
title | Probabilistic model for minor component analysis based on born rule |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T23%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20model%20for%20minor%20component%20analysis%20based%20on%20born%20rule&rft.btitle=11th%20Symposium%20on%20Neural%20Network%20Applications%20in%20Electrical%20Engineering&rft.au=Jankovic,%20M.%20V.&rft.date=2012-09&rft.spage=85&rft.epage=88&rft.pages=85-88&rft.isbn=9781467315692&rft.isbn_list=1467315699&rft_id=info:doi/10.1109/NEUREL.2012.6419971&rft.eisbn=9781467315722&rft.eisbn_list=1467315729&rft.eisbn_list=9781467315715&rft.eisbn_list=1467315710&rft_dat=%3Cieee_6IE%3E6419971%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-21595e398ed319dc91a397fc3fbfd31df8ccd4fa6c1fc3ffd8c84aa6eb9aaed33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6419971&rfr_iscdi=true |