Loading…

Automatic vessel tracking and segmentation using epicardial ultrasound in bypass surgery

Epicardial ultrasound has been suggested as an alternative approach for assessing the quality of coronary artery bypass graft anastomoses. Using automatic tracking and segmentation of the anastomotic vessel lumen in transverse epicardial ultrasound images it is possible to quantitatively assess the...

Full description

Saved in:
Bibliographic Details
Main Authors: Jorgensen, A. S., Schmidt, S. E., Staalsen, Niels-Henrik, Ostergaard, L. R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 12
container_issue
container_start_page 9
container_title
container_volume
creator Jorgensen, A. S.
Schmidt, S. E.
Staalsen, Niels-Henrik
Ostergaard, L. R.
description Epicardial ultrasound has been suggested as an alternative approach for assessing the quality of coronary artery bypass graft anastomoses. Using automatic tracking and segmentation of the anastomotic vessel lumen in transverse epicardial ultrasound images it is possible to quantitatively assess the stenosis degree of surgical errors. We propose an automatic vessel tracking and segmentation framework that can detect, track, and segment vessels through ultrasound sequences with the purpose of enabling stenosis quantification. An average accuracy of 92.86% in detecting vessels was obtained 78.51% of the vessel segmentations were assessed as correct.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6420317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6420317</ieee_id><sourcerecordid>6420317</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a933082ba48eabfefbfb05533b0f564c23610d695ecd4b32e82cbcc512d9dfb3</originalsourceid><addsrcrecordid>eNo1jMlqwzAURdUJ6qT5gm70AwZZT-MyhE4Q6KaF7oIkPxu1nrDsgv--Lm1WF8453Auys9oUQmngTEt9STIOXObGSLgim7NQ8ppkjGuVK6nFLdmk9MlYYa2WGfnYz1PfuikG-o0pYUOn0YWv2NXUdSVNWLfYTavvOzqnX4xDDG4so2vo3Kxx6uc1jB31y-BSomkeaxyXO3JTuSbh7n-35P3x4e3wnB9fn14O-2MeCy2nXDgLwAz3Thh0vsLKV55JCeBZJZUIHFTBSmUlhlJ44Gh48CHIgpe2rDxsyf3fb0TE0zDG1o3LSQnOoNDwA_KbUxM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic vessel tracking and segmentation using epicardial ultrasound in bypass surgery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jorgensen, A. S. ; Schmidt, S. E. ; Staalsen, Niels-Henrik ; Ostergaard, L. R.</creator><creatorcontrib>Jorgensen, A. S. ; Schmidt, S. E. ; Staalsen, Niels-Henrik ; Ostergaard, L. R.</creatorcontrib><description>Epicardial ultrasound has been suggested as an alternative approach for assessing the quality of coronary artery bypass graft anastomoses. Using automatic tracking and segmentation of the anastomotic vessel lumen in transverse epicardial ultrasound images it is possible to quantitatively assess the stenosis degree of surgical errors. We propose an automatic vessel tracking and segmentation framework that can detect, track, and segment vessels through ultrasound sequences with the purpose of enabling stenosis quantification. An average accuracy of 92.86% in detecting vessels was obtained 78.51% of the vessel segmentations were assessed as correct.</description><identifier>ISSN: 0276-6574</identifier><identifier>ISBN: 1467320765</identifier><identifier>ISBN: 9781467320764</identifier><identifier>EISSN: 2325-8853</identifier><identifier>EISBN: 9781467320757</identifier><identifier>EISBN: 9781467320771</identifier><identifier>EISBN: 1467320757</identifier><identifier>EISBN: 1467320773</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arteries ; Image segmentation ; Motion segmentation ; Quality control ; Surgery ; Tracking ; Ultrasonic imaging</subject><ispartof>2012 Computing in Cardiology, 2012, p.9-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6420317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6420317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jorgensen, A. S.</creatorcontrib><creatorcontrib>Schmidt, S. E.</creatorcontrib><creatorcontrib>Staalsen, Niels-Henrik</creatorcontrib><creatorcontrib>Ostergaard, L. R.</creatorcontrib><title>Automatic vessel tracking and segmentation using epicardial ultrasound in bypass surgery</title><title>2012 Computing in Cardiology</title><addtitle>CiC</addtitle><description>Epicardial ultrasound has been suggested as an alternative approach for assessing the quality of coronary artery bypass graft anastomoses. Using automatic tracking and segmentation of the anastomotic vessel lumen in transverse epicardial ultrasound images it is possible to quantitatively assess the stenosis degree of surgical errors. We propose an automatic vessel tracking and segmentation framework that can detect, track, and segment vessels through ultrasound sequences with the purpose of enabling stenosis quantification. An average accuracy of 92.86% in detecting vessels was obtained 78.51% of the vessel segmentations were assessed as correct.</description><subject>Arteries</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Quality control</subject><subject>Surgery</subject><subject>Tracking</subject><subject>Ultrasonic imaging</subject><issn>0276-6574</issn><issn>2325-8853</issn><isbn>1467320765</isbn><isbn>9781467320764</isbn><isbn>9781467320757</isbn><isbn>9781467320771</isbn><isbn>1467320757</isbn><isbn>1467320773</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jMlqwzAURdUJ6qT5gm70AwZZT-MyhE4Q6KaF7oIkPxu1nrDsgv--Lm1WF8453Auys9oUQmngTEt9STIOXObGSLgim7NQ8ppkjGuVK6nFLdmk9MlYYa2WGfnYz1PfuikG-o0pYUOn0YWv2NXUdSVNWLfYTavvOzqnX4xDDG4so2vo3Kxx6uc1jB31y-BSomkeaxyXO3JTuSbh7n-35P3x4e3wnB9fn14O-2MeCy2nXDgLwAz3Thh0vsLKV55JCeBZJZUIHFTBSmUlhlJ44Gh48CHIgpe2rDxsyf3fb0TE0zDG1o3LSQnOoNDwA_KbUxM</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jorgensen, A. S.</creator><creator>Schmidt, S. E.</creator><creator>Staalsen, Niels-Henrik</creator><creator>Ostergaard, L. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Automatic vessel tracking and segmentation using epicardial ultrasound in bypass surgery</title><author>Jorgensen, A. S. ; Schmidt, S. E. ; Staalsen, Niels-Henrik ; Ostergaard, L. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a933082ba48eabfefbfb05533b0f564c23610d695ecd4b32e82cbcc512d9dfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arteries</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Quality control</topic><topic>Surgery</topic><topic>Tracking</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Jorgensen, A. S.</creatorcontrib><creatorcontrib>Schmidt, S. E.</creatorcontrib><creatorcontrib>Staalsen, Niels-Henrik</creatorcontrib><creatorcontrib>Ostergaard, L. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jorgensen, A. S.</au><au>Schmidt, S. E.</au><au>Staalsen, Niels-Henrik</au><au>Ostergaard, L. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic vessel tracking and segmentation using epicardial ultrasound in bypass surgery</atitle><btitle>2012 Computing in Cardiology</btitle><stitle>CiC</stitle><date>2012-09</date><risdate>2012</risdate><spage>9</spage><epage>12</epage><pages>9-12</pages><issn>0276-6574</issn><eissn>2325-8853</eissn><isbn>1467320765</isbn><isbn>9781467320764</isbn><eisbn>9781467320757</eisbn><eisbn>9781467320771</eisbn><eisbn>1467320757</eisbn><eisbn>1467320773</eisbn><abstract>Epicardial ultrasound has been suggested as an alternative approach for assessing the quality of coronary artery bypass graft anastomoses. Using automatic tracking and segmentation of the anastomotic vessel lumen in transverse epicardial ultrasound images it is possible to quantitatively assess the stenosis degree of surgical errors. We propose an automatic vessel tracking and segmentation framework that can detect, track, and segment vessels through ultrasound sequences with the purpose of enabling stenosis quantification. An average accuracy of 92.86% in detecting vessels was obtained 78.51% of the vessel segmentations were assessed as correct.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0276-6574
ispartof 2012 Computing in Cardiology, 2012, p.9-12
issn 0276-6574
2325-8853
language eng
recordid cdi_ieee_primary_6420317
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arteries
Image segmentation
Motion segmentation
Quality control
Surgery
Tracking
Ultrasonic imaging
title Automatic vessel tracking and segmentation using epicardial ultrasound in bypass surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20vessel%20tracking%20and%20segmentation%20using%20epicardial%20ultrasound%20in%20bypass%20surgery&rft.btitle=2012%20Computing%20in%20Cardiology&rft.au=Jorgensen,%20A.%20S.&rft.date=2012-09&rft.spage=9&rft.epage=12&rft.pages=9-12&rft.issn=0276-6574&rft.eissn=2325-8853&rft.isbn=1467320765&rft.isbn_list=9781467320764&rft_id=info:doi/&rft.eisbn=9781467320757&rft.eisbn_list=9781467320771&rft.eisbn_list=1467320757&rft.eisbn_list=1467320773&rft_dat=%3Cieee_6IE%3E6420317%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4a933082ba48eabfefbfb05533b0f564c23610d695ecd4b32e82cbcc512d9dfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6420317&rfr_iscdi=true