Loading…

IVTURS: A Linguistic Fuzzy Rule-Based Classification System Based On a New Interval-Valued Fuzzy Reasoning Method With Tuning and Rule Selection

Interval-valued fuzzy sets have been shown to be a useful tool to deal with the ignorance related to the definition of the linguistic labels. Specifically, they have been successfully applied to solve classification problems, performing simple modifications on the fuzzy reasoning method to work with...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2013-06, Vol.21 (3), p.399-411
Main Authors: Sanz, Jose Antonio, Fernandez, A., Bustince, H., Herrera, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interval-valued fuzzy sets have been shown to be a useful tool to deal with the ignorance related to the definition of the linguistic labels. Specifically, they have been successfully applied to solve classification problems, performing simple modifications on the fuzzy reasoning method to work with this representation and making the classification based on a single number. In this paper, we present IVTURS, which is a new linguistic fuzzy rule-based classification method based on a new completely interval-valued fuzzy reasoning method. This inference process uses interval-valued restricted equivalence functions to increase the relevance of the rules in which the equivalence of the interval membership degrees of the patterns and the ideal membership degrees is greater, which is a desirable behavior. Furthermore, their parametrized construction allows the computation of the optimal function for each variable to be performed, which could involve a potential improvement in the system's behavior. Additionally, we combine this tuning of the equivalence with rule selection in order to decrease the complexity of the system. In this paper, we name our method IVTURS-FARC, since we use the FARC-HD method to accomplish the fuzzy rule learning process. The experimental study is developed in three steps in order to ascertain the quality of our new proposal. First, we determine both the essential role that interval-valued fuzzy sets play in the method and the need for the rule selection process. Next, we show the improvements achieved by IVTURS-FARC with respect to the tuning of the degree of ignorance when it is applied in both an isolated way and when combined with the tuning of the equivalence. Finally, the significance of IVTURS-FARC is further depicted by means of a comparison by which it is proved to outperform the results of FARC-HD and FURIA, which are two high performing fuzzy classification algorithms.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2013.2243153