Loading…

A 32 nm 0.58-fJ/Bit/Search 1-GHz Ternary Content Addressable Memory Compiler Using Silicon-Aware Early-Predict Late-Correct Sensing With Embedded Deep-Trench Capacitor Noise Mitigation

A Ternary Content Addressable Memory (TCAM) uses a two-phase search operation where early prediction on its pre-search results prematurely activates the subsequent main-search operation, which is later interrupted only if the final pre-search results contradict the early prediction. This early main-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2013-04, Vol.48 (4), p.932-939
Main Authors: Arsovski, I., Hebig, T., Dobson, D., Wistort, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213
cites cdi_FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213
container_end_page 939
container_issue 4
container_start_page 932
container_title IEEE journal of solid-state circuits
container_volume 48
creator Arsovski, I.
Hebig, T.
Dobson, D.
Wistort, R.
description A Ternary Content Addressable Memory (TCAM) uses a two-phase search operation where early prediction on its pre-search results prematurely activates the subsequent main-search operation, which is later interrupted only if the final pre-search results contradict the early prediction. This early main-search activation improves performance by 30%, while the low-probability of a late-correct has a negligible impact on power consumption. This Early-Predict Late-Correct (EPLC) sensing with silicon-aware tuning enables a high-performance TCAM compiler implemented in 32 nm High-K Metal Gate SOI process to achieve 1 Gsearch/sec throughput on a 2048×640 bit TCAM instance while consuming only 0.76 W, resulting in an energy efficiency of 0.58-fJ/bit/search. Embedded Deep-Trench (DT) capacitance reduces power supply collapse by 53% while adding only 5% area overhead for a total TCAM area of 1.56 mm 2 .
doi_str_mv 10.1109/JSSC.2013.2239092
format article
fullrecord <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6422330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6422330</ieee_id><sourcerecordid>27368843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213</originalsourceid><addsrcrecordid>eNo9kM1u2zAQhImiBeKmfYCgF156pM0l9Xt0VTdp4P4AcpDcBIpcJSwkSiAJBOmT9fFKx0FOi8HOzC4-Qi6ArwF4vblu22YtOMi1ELLmtXhDVpDnFYNS3r0lK86hYrXg_Iy8D-FPkllWwYr821IpqJsoXyfzcL35YuOmReX1AwV2efWXHtA75Z9oM7uILtKtMR5DUP2I9AdO8_NqWuyInt4E6-5pa0erZ8e2j8oj3Sk_PrHfHo3Vke5VRNbM3mMSLbrnwK2ND3Q39WgMGvoVcWEHjy690KhFaRtnT3_ONqSDNtp7Fe3sPpB3gxoDfnyZ5-Tm2-7QXLH9r8vvzXbPtKjzyDKdFzwvC66RV70AXUFdlFBLZQqscp2XWQ0DL8seMhigMDkHboYhy3oOQoA8J3Dq1X4OwePQLd5OCUgHvDui747ouyP67gV9ynw-ZRYVtBoHr5y24TUoSllUVSaT79PJZxHxdV1kqUdy-R_r3YwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 32 nm 0.58-fJ/Bit/Search 1-GHz Ternary Content Addressable Memory Compiler Using Silicon-Aware Early-Predict Late-Correct Sensing With Embedded Deep-Trench Capacitor Noise Mitigation</title><source>IEEE Xplore (Online service)</source><creator>Arsovski, I. ; Hebig, T. ; Dobson, D. ; Wistort, R.</creator><creatorcontrib>Arsovski, I. ; Hebig, T. ; Dobson, D. ; Wistort, R.</creatorcontrib><description>A Ternary Content Addressable Memory (TCAM) uses a two-phase search operation where early prediction on its pre-search results prematurely activates the subsequent main-search operation, which is later interrupted only if the final pre-search results contradict the early prediction. This early main-search activation improves performance by 30%, while the low-probability of a late-correct has a negligible impact on power consumption. This Early-Predict Late-Correct (EPLC) sensing with silicon-aware tuning enables a high-performance TCAM compiler implemented in 32 nm High-K Metal Gate SOI process to achieve 1 Gsearch/sec throughput on a 2048×640 bit TCAM instance while consuming only 0.76 W, resulting in an energy efficiency of 0.58-fJ/bit/search. Embedded Deep-Trench (DT) capacitance reduces power supply collapse by 53% while adding only 5% area overhead for a total TCAM area of 1.56 mm 2 .</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2013.2239092</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer architecture ; Computers, microcomputers ; deep-trench ; early-predict late-correct ; Electronics ; Exact sciences and technology ; Hardware ; high performance ; Input-output equipment ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; low-power ; Magnetic and optical mass memories ; Noise ; NOR ; Performance evaluation ; Power demand ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; sensing ; Sensors ; silicon-aware ; Storage and reproduction of information ; Switches ; TCAM ; Transistors</subject><ispartof>IEEE journal of solid-state circuits, 2013-04, Vol.48 (4), p.932-939</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213</citedby><cites>FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6422330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27368843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arsovski, I.</creatorcontrib><creatorcontrib>Hebig, T.</creatorcontrib><creatorcontrib>Dobson, D.</creatorcontrib><creatorcontrib>Wistort, R.</creatorcontrib><title>A 32 nm 0.58-fJ/Bit/Search 1-GHz Ternary Content Addressable Memory Compiler Using Silicon-Aware Early-Predict Late-Correct Sensing With Embedded Deep-Trench Capacitor Noise Mitigation</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A Ternary Content Addressable Memory (TCAM) uses a two-phase search operation where early prediction on its pre-search results prematurely activates the subsequent main-search operation, which is later interrupted only if the final pre-search results contradict the early prediction. This early main-search activation improves performance by 30%, while the low-probability of a late-correct has a negligible impact on power consumption. This Early-Predict Late-Correct (EPLC) sensing with silicon-aware tuning enables a high-performance TCAM compiler implemented in 32 nm High-K Metal Gate SOI process to achieve 1 Gsearch/sec throughput on a 2048×640 bit TCAM instance while consuming only 0.76 W, resulting in an energy efficiency of 0.58-fJ/bit/search. Embedded Deep-Trench (DT) capacitance reduces power supply collapse by 53% while adding only 5% area overhead for a total TCAM area of 1.56 mm 2 .</description><subject>Applied sciences</subject><subject>Computer architecture</subject><subject>Computers, microcomputers</subject><subject>deep-trench</subject><subject>early-predict late-correct</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Hardware</subject><subject>high performance</subject><subject>Input-output equipment</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>low-power</subject><subject>Magnetic and optical mass memories</subject><subject>Noise</subject><subject>NOR</subject><subject>Performance evaluation</subject><subject>Power demand</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>sensing</subject><subject>Sensors</subject><subject>silicon-aware</subject><subject>Storage and reproduction of information</subject><subject>Switches</subject><subject>TCAM</subject><subject>Transistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1u2zAQhImiBeKmfYCgF156pM0l9Xt0VTdp4P4AcpDcBIpcJSwkSiAJBOmT9fFKx0FOi8HOzC4-Qi6ArwF4vblu22YtOMi1ELLmtXhDVpDnFYNS3r0lK86hYrXg_Iy8D-FPkllWwYr821IpqJsoXyfzcL35YuOmReX1AwV2efWXHtA75Z9oM7uILtKtMR5DUP2I9AdO8_NqWuyInt4E6-5pa0erZ8e2j8oj3Sk_PrHfHo3Vke5VRNbM3mMSLbrnwK2ND3Q39WgMGvoVcWEHjy690KhFaRtnT3_ONqSDNtp7Fe3sPpB3gxoDfnyZ5-Tm2-7QXLH9r8vvzXbPtKjzyDKdFzwvC66RV70AXUFdlFBLZQqscp2XWQ0DL8seMhigMDkHboYhy3oOQoA8J3Dq1X4OwePQLd5OCUgHvDui747ouyP67gV9ynw-ZRYVtBoHr5y24TUoSllUVSaT79PJZxHxdV1kqUdy-R_r3YwE</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Arsovski, I.</creator><creator>Hebig, T.</creator><creator>Dobson, D.</creator><creator>Wistort, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>A 32 nm 0.58-fJ/Bit/Search 1-GHz Ternary Content Addressable Memory Compiler Using Silicon-Aware Early-Predict Late-Correct Sensing With Embedded Deep-Trench Capacitor Noise Mitigation</title><author>Arsovski, I. ; Hebig, T. ; Dobson, D. ; Wistort, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Computer architecture</topic><topic>Computers, microcomputers</topic><topic>deep-trench</topic><topic>early-predict late-correct</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Hardware</topic><topic>high performance</topic><topic>Input-output equipment</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>low-power</topic><topic>Magnetic and optical mass memories</topic><topic>Noise</topic><topic>NOR</topic><topic>Performance evaluation</topic><topic>Power demand</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>sensing</topic><topic>Sensors</topic><topic>silicon-aware</topic><topic>Storage and reproduction of information</topic><topic>Switches</topic><topic>TCAM</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arsovski, I.</creatorcontrib><creatorcontrib>Hebig, T.</creatorcontrib><creatorcontrib>Dobson, D.</creatorcontrib><creatorcontrib>Wistort, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arsovski, I.</au><au>Hebig, T.</au><au>Dobson, D.</au><au>Wistort, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 32 nm 0.58-fJ/Bit/Search 1-GHz Ternary Content Addressable Memory Compiler Using Silicon-Aware Early-Predict Late-Correct Sensing With Embedded Deep-Trench Capacitor Noise Mitigation</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>48</volume><issue>4</issue><spage>932</spage><epage>939</epage><pages>932-939</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A Ternary Content Addressable Memory (TCAM) uses a two-phase search operation where early prediction on its pre-search results prematurely activates the subsequent main-search operation, which is later interrupted only if the final pre-search results contradict the early prediction. This early main-search activation improves performance by 30%, while the low-probability of a late-correct has a negligible impact on power consumption. This Early-Predict Late-Correct (EPLC) sensing with silicon-aware tuning enables a high-performance TCAM compiler implemented in 32 nm High-K Metal Gate SOI process to achieve 1 Gsearch/sec throughput on a 2048×640 bit TCAM instance while consuming only 0.76 W, resulting in an energy efficiency of 0.58-fJ/bit/search. Embedded Deep-Trench (DT) capacitance reduces power supply collapse by 53% while adding only 5% area overhead for a total TCAM area of 1.56 mm 2 .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2013.2239092</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2013-04, Vol.48 (4), p.932-939
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_6422330
source IEEE Xplore (Online service)
subjects Applied sciences
Computer architecture
Computers, microcomputers
deep-trench
early-predict late-correct
Electronics
Exact sciences and technology
Hardware
high performance
Input-output equipment
Integrated circuits
Integrated circuits by function (including memories and processors)
low-power
Magnetic and optical mass memories
Noise
NOR
Performance evaluation
Power demand
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
sensing
Sensors
silicon-aware
Storage and reproduction of information
Switches
TCAM
Transistors
title A 32 nm 0.58-fJ/Bit/Search 1-GHz Ternary Content Addressable Memory Compiler Using Silicon-Aware Early-Predict Late-Correct Sensing With Embedded Deep-Trench Capacitor Noise Mitigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2032%20nm%200.58-fJ/Bit/Search%201-GHz%20Ternary%20Content%20Addressable%20Memory%20Compiler%20Using%20Silicon-Aware%20Early-Predict%20Late-Correct%20Sensing%20With%20Embedded%20Deep-Trench%20Capacitor%20Noise%20Mitigation&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Arsovski,%20I.&rft.date=2013-04-01&rft.volume=48&rft.issue=4&rft.spage=932&rft.epage=939&rft.pages=932-939&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2013.2239092&rft_dat=%3Cpascalfrancis_ieee_%3E27368843%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-4c5605760ce08b21c81967193ad6e85c57491f077b141f16d5010dff44b012213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6422330&rfr_iscdi=true