Loading…

Machine Learning Paradigms for Speech Recognition: An Overview

Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasional...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-05, Vol.21 (5), p.1060-1089
Main Authors: Deng, Li, Li, Xiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasionally does use ASR as a large-scale, realistic application to rigorously test the effectiveness of a given technique, and to inspire new problems arising from the inherently sequential and dynamic nature of speech. On the other hand, even though ASR is available commercially for some applications, it is largely an unsolved problem - for almost all applications, the performance of ASR is not on par with human performance. New insight from modern ML methodology shows great promise to advance the state-of-the-art in ASR technology. This overview article provides readers with an overview of modern ML techniques as utilized in the current and as relevant to future ASR research and systems. The intent is to foster further cross-pollination between the ML and ASR communities than has occurred in the past. The article is organized according to the major ML paradigms that are either popular already or have potential for making significant contributions to ASR technology. The paradigms presented and elaborated in this overview include: generative and discriminative learning; supervised, unsupervised, semi-supervised, and active learning; adaptive and multi-task learning; and Bayesian learning. These learning paradigms are motivated and discussed in the context of ASR technology and applications. We finally present and analyze recent developments of deep learning and learning with sparse representations, focusing on their direct relevance to advancing ASR technology.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2013.2244083