Loading…
Machine Learning Paradigms for Speech Recognition: An Overview
Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasional...
Saved in:
Published in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-05, Vol.21 (5), p.1060-1089 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasionally does use ASR as a large-scale, realistic application to rigorously test the effectiveness of a given technique, and to inspire new problems arising from the inherently sequential and dynamic nature of speech. On the other hand, even though ASR is available commercially for some applications, it is largely an unsolved problem - for almost all applications, the performance of ASR is not on par with human performance. New insight from modern ML methodology shows great promise to advance the state-of-the-art in ASR technology. This overview article provides readers with an overview of modern ML techniques as utilized in the current and as relevant to future ASR research and systems. The intent is to foster further cross-pollination between the ML and ASR communities than has occurred in the past. The article is organized according to the major ML paradigms that are either popular already or have potential for making significant contributions to ASR technology. The paradigms presented and elaborated in this overview include: generative and discriminative learning; supervised, unsupervised, semi-supervised, and active learning; adaptive and multi-task learning; and Bayesian learning. These learning paradigms are motivated and discussed in the context of ASR technology and applications. We finally present and analyze recent developments of deep learning and learning with sparse representations, focusing on their direct relevance to advancing ASR technology. |
---|---|
ISSN: | 1558-7916 2329-9290 1558-7924 2329-9304 |
DOI: | 10.1109/TASL.2013.2244083 |