Loading…

Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies

We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fai...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruijing Hu, Sopena, J., Arantes, L., Sens, P., Demeure, I.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 340
container_issue
container_start_page 331
container_title
container_volume
creator Ruijing Hu
Sopena, J.
Arantes, L.
Sens, P.
Demeure, I.
description We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fair comparison, particularly in terms of reliability, we propose a new parameter, called effectual fan out. For a given topology and gossip algorithm, the effectual fan out characterizes the mean dissemination power of infected sites. For large-scale networks, the effectual fan out has thus a strong linear correlation with message complexity. It enables to make an accurate analysis of the behavior of a gossip algorithm over a topology. Furthermore, it simplifies the theoretical comparison of different gossip algorithms on the topology. Based on extensive experiments on top of OMNet++ simulator, which make use of the effectual fan out, we discuss the impact of topologies and gossip algorithms on performance, and how to combine them to have the best gain in terms of reliability.
doi_str_mv 10.1109/SRDS.2012.28
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6424873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6424873</ieee_id><sourcerecordid>6424873</sourcerecordid><originalsourceid>FETCH-LOGICAL-h209t-497355fb2ca07ba3ee3b7a7d135e10f4f103cf5f518a80cb611444467eba59523</originalsourceid><addsrcrecordid>eNotjMtOAjEUQOsrcUR27tz0BwZvn7ddEgQ0ITEBXJPO0ELNDJ20xMS_16hncxYnOYQ8MJgwBvZps37eTDgwPuHmgowtGkBtlUQjzSWpuEJVG6n51W9jUqPgwiJck4qBhtoahbfkrpQPAA7CYEWWCxcznaV-cDmWdKIp0GUqJQ502h1SjudjX2j69JmuXD74etO6ztO1O-1TT7dpSF06RF_uyU1wXfHjf4_I-2K-nb3Uq7fl62y6qo8c7LmWFoVSoeGtA2yc8F406HDPhPIMggwMRBtUUMw4A22jGZM_aPSNU1ZxMSKPf9_ovd8NOfYuf-205NKgEN9ILU87</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies</title><source>IEEE Xplore All Conference Series</source><creator>Ruijing Hu ; Sopena, J. ; Arantes, L. ; Sens, P. ; Demeure, I.</creator><creatorcontrib>Ruijing Hu ; Sopena, J. ; Arantes, L. ; Sens, P. ; Demeure, I.</creatorcontrib><description>We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fair comparison, particularly in terms of reliability, we propose a new parameter, called effectual fan out. For a given topology and gossip algorithm, the effectual fan out characterizes the mean dissemination power of infected sites. For large-scale networks, the effectual fan out has thus a strong linear correlation with message complexity. It enables to make an accurate analysis of the behavior of a gossip algorithm over a topology. Furthermore, it simplifies the theoretical comparison of different gossip algorithms on the topology. Based on extensive experiments on top of OMNet++ simulator, which make use of the effectual fan out, we discuss the impact of topologies and gossip algorithms on performance, and how to combine them to have the best gain in terms of reliability.</description><identifier>ISSN: 1060-9857</identifier><identifier>ISBN: 9781467323970</identifier><identifier>ISBN: 1467323977</identifier><identifier>EISSN: 2575-8462</identifier><identifier>EISBN: 9780769547848</identifier><identifier>EISBN: 0769547842</identifier><identifier>DOI: 10.1109/SRDS.2012.28</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Complexity theory ; Distributed Algorithms ; Gossip Algorithms ; Message Complexity ; Network topology ; Performance Evaluation ; Probabilistic logic ; Protocols ; Random Topologies ; Reliability ; Topology</subject><ispartof>2012 IEEE 31st Symposium on Reliable Distributed Systems, 2012, p.331-340</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6424873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6424873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruijing Hu</creatorcontrib><creatorcontrib>Sopena, J.</creatorcontrib><creatorcontrib>Arantes, L.</creatorcontrib><creatorcontrib>Sens, P.</creatorcontrib><creatorcontrib>Demeure, I.</creatorcontrib><title>Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies</title><title>2012 IEEE 31st Symposium on Reliable Distributed Systems</title><addtitle>RELDIS</addtitle><description>We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fair comparison, particularly in terms of reliability, we propose a new parameter, called effectual fan out. For a given topology and gossip algorithm, the effectual fan out characterizes the mean dissemination power of infected sites. For large-scale networks, the effectual fan out has thus a strong linear correlation with message complexity. It enables to make an accurate analysis of the behavior of a gossip algorithm over a topology. Furthermore, it simplifies the theoretical comparison of different gossip algorithms on the topology. Based on extensive experiments on top of OMNet++ simulator, which make use of the effectual fan out, we discuss the impact of topologies and gossip algorithms on performance, and how to combine them to have the best gain in terms of reliability.</description><subject>Algorithm design and analysis</subject><subject>Complexity theory</subject><subject>Distributed Algorithms</subject><subject>Gossip Algorithms</subject><subject>Message Complexity</subject><subject>Network topology</subject><subject>Performance Evaluation</subject><subject>Probabilistic logic</subject><subject>Protocols</subject><subject>Random Topologies</subject><subject>Reliability</subject><subject>Topology</subject><issn>1060-9857</issn><issn>2575-8462</issn><isbn>9781467323970</isbn><isbn>1467323977</isbn><isbn>9780769547848</isbn><isbn>0769547842</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOAjEUQOsrcUR27tz0BwZvn7ddEgQ0ITEBXJPO0ELNDJ20xMS_16hncxYnOYQ8MJgwBvZps37eTDgwPuHmgowtGkBtlUQjzSWpuEJVG6n51W9jUqPgwiJck4qBhtoahbfkrpQPAA7CYEWWCxcznaV-cDmWdKIp0GUqJQ502h1SjudjX2j69JmuXD74etO6ztO1O-1TT7dpSF06RF_uyU1wXfHjf4_I-2K-nb3Uq7fl62y6qo8c7LmWFoVSoeGtA2yc8F406HDPhPIMggwMRBtUUMw4A22jGZM_aPSNU1ZxMSKPf9_ovd8NOfYuf-205NKgEN9ILU87</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Ruijing Hu</creator><creator>Sopena, J.</creator><creator>Arantes, L.</creator><creator>Sens, P.</creator><creator>Demeure, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies</title><author>Ruijing Hu ; Sopena, J. ; Arantes, L. ; Sens, P. ; Demeure, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h209t-497355fb2ca07ba3ee3b7a7d135e10f4f103cf5f518a80cb611444467eba59523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Complexity theory</topic><topic>Distributed Algorithms</topic><topic>Gossip Algorithms</topic><topic>Message Complexity</topic><topic>Network topology</topic><topic>Performance Evaluation</topic><topic>Probabilistic logic</topic><topic>Protocols</topic><topic>Random Topologies</topic><topic>Reliability</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruijing Hu</creatorcontrib><creatorcontrib>Sopena, J.</creatorcontrib><creatorcontrib>Arantes, L.</creatorcontrib><creatorcontrib>Sens, P.</creatorcontrib><creatorcontrib>Demeure, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruijing Hu</au><au>Sopena, J.</au><au>Arantes, L.</au><au>Sens, P.</au><au>Demeure, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies</atitle><btitle>2012 IEEE 31st Symposium on Reliable Distributed Systems</btitle><stitle>RELDIS</stitle><date>2012-10</date><risdate>2012</risdate><spage>331</spage><epage>340</epage><pages>331-340</pages><issn>1060-9857</issn><eissn>2575-8462</eissn><isbn>9781467323970</isbn><isbn>1467323977</isbn><eisbn>9780769547848</eisbn><eisbn>0769547842</eisbn><coden>IEEPAD</coden><abstract>We present a thorough performance comparison of three widely used probabilistic gossip algorithms over well-known random graphs. These graphs represent some large-scale network topologies: Bernoulli (or Erdos-Rényi) graph, random geometric graph, and scale-free graph. In order to conduct such a fair comparison, particularly in terms of reliability, we propose a new parameter, called effectual fan out. For a given topology and gossip algorithm, the effectual fan out characterizes the mean dissemination power of infected sites. For large-scale networks, the effectual fan out has thus a strong linear correlation with message complexity. It enables to make an accurate analysis of the behavior of a gossip algorithm over a topology. Furthermore, it simplifies the theoretical comparison of different gossip algorithms on the topology. Based on extensive experiments on top of OMNet++ simulator, which make use of the effectual fan out, we discuss the impact of topologies and gossip algorithms on performance, and how to combine them to have the best gain in terms of reliability.</abstract><pub>IEEE</pub><doi>10.1109/SRDS.2012.28</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1060-9857
ispartof 2012 IEEE 31st Symposium on Reliable Distributed Systems, 2012, p.331-340
issn 1060-9857
2575-8462
language eng
recordid cdi_ieee_primary_6424873
source IEEE Xplore All Conference Series
subjects Algorithm design and analysis
Complexity theory
Distributed Algorithms
Gossip Algorithms
Message Complexity
Network topology
Performance Evaluation
Probabilistic logic
Protocols
Random Topologies
Reliability
Topology
title Fair Comparison of Gossip Algorithms over Large-Scale Random Topologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fair%20Comparison%20of%20Gossip%20Algorithms%20over%20Large-Scale%20Random%20Topologies&rft.btitle=2012%20IEEE%2031st%20Symposium%20on%20Reliable%20Distributed%20Systems&rft.au=Ruijing%20Hu&rft.date=2012-10&rft.spage=331&rft.epage=340&rft.pages=331-340&rft.issn=1060-9857&rft.eissn=2575-8462&rft.isbn=9781467323970&rft.isbn_list=1467323977&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SRDS.2012.28&rft.eisbn=9780769547848&rft.eisbn_list=0769547842&rft_dat=%3Cieee_CHZPO%3E6424873%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h209t-497355fb2ca07ba3ee3b7a7d135e10f4f103cf5f518a80cb611444467eba59523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6424873&rfr_iscdi=true