Loading…

A Lyapunov-based approach for Time-Coordinated 3D Path-Following of multiple quadrotors

This paper focuses on the problem of developing control laws to solve the Time-Coordinated 3D Path-Following task for multiple quadrotor UAVs in the presence of time-varying communication networks and spatial and temporal constraints. The objective is to enable a fleet of quadrotors to track predefi...

Full description

Saved in:
Bibliographic Details
Main Authors: Cichella, V., Kaminer, I., Xargay, E., Dobrokhodov, V., Hovakimyan, N., Aguiar, A. P., Pascoal, A. M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on the problem of developing control laws to solve the Time-Coordinated 3D Path-Following task for multiple quadrotor UAVs in the presence of time-varying communication networks and spatial and temporal constraints. The objective is to enable a fleet of quadrotors to track predefined spatial paths while coordinating to achieve synchronization in both time and heading. One scenario is a symmetric exchange of position by four quadrotors initially positioned in four corners of a square room. When the mission starts, every quadrotor is required to execute collision free maneuvers and arrive at the opposite corner at the same desired instant of time. In this paper, the time-coordination task is solved by adjusting the second derivative of the coordination variable along the desired paths. Conditions are derived under which the coordination and path-following errors converge to a neighborhood of zero. Flight test results are presented to validate the theoretical findings.
ISSN:0191-2216
DOI:10.1109/CDC.2012.6425933