Loading…

Designing games for distributed optimization with a time varying communication graph

The central goal in multi-agent systems is to engineer a decision making architecture where agents make independent decisions in response to local information while ensuring that the emergent global behavior is desirable with respect to a given system level objective. Our previous work identified a...

Full description

Saved in:
Bibliographic Details
Main Authors: Na Li, Marden, J. R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7769
container_issue
container_start_page 7764
container_title
container_volume
creator Na Li
Marden, J. R.
description The central goal in multi-agent systems is to engineer a decision making architecture where agents make independent decisions in response to local information while ensuring that the emergent global behavior is desirable with respect to a given system level objective. Our previous work identified a systematic methodology for such a task using the framework of state based games. One core advantage of the approach is that it provides a two step process that can be decoupled by utilizing specific classes of games. Exploiting this decomposition could lead to a rich class of distributed learning algorithm. However, a drawback of our previous approach is the dependence on a time-invariant and connected communication graph. These conditions are not practical for a wide variety of multi-agent systems. In this paper we propose a new game theoretical approach for addressing distributed optimization problems that permits relaxations in the structure of the communication graph.
doi_str_mv 10.1109/CDC.2012.6426086
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426086</ieee_id><sourcerecordid>6426086</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3ebe8944049e2074f5559a525f8d76bccc15af1345db66775c0205c32dc9fe0b3</originalsourceid><addsrcrecordid>eNo1UEtLAzEYjKhgW3sXvOQP7PrlnRxl6wsKXuq5ZLPJNuI-2KSK_norradhhplhGIRuCJSEgLmrVlVJgdBScipByzM0J1wqRkEydo6WRul_LvQFmgExpKCUyCs0T-kdADRIOUOblU-x7WPf4tZ2PuEwTLiJKU-x3mff4GHMsYs_Nsehx18x77DFB8XjTzt9_8Xc0HX7Prqjo53suLtGl8F-JL884QK9PT5squdi_fr0Ut2vi0iUyAXztdeGc-DGU1A8CCGMFVQE3ShZO-eIsIEwLppaSqWEAwrCMdo4EzzUbIFuj73Re78dp9gdNm1Pj7Bfc7hTUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Designing games for distributed optimization with a time varying communication graph</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Na Li ; Marden, J. R.</creator><creatorcontrib>Na Li ; Marden, J. R.</creatorcontrib><description>The central goal in multi-agent systems is to engineer a decision making architecture where agents make independent decisions in response to local information while ensuring that the emergent global behavior is desirable with respect to a given system level objective. Our previous work identified a systematic methodology for such a task using the framework of state based games. One core advantage of the approach is that it provides a two step process that can be decoupled by utilizing specific classes of games. Exploiting this decomposition could lead to a rich class of distributed learning algorithm. However, a drawback of our previous approach is the dependence on a time-invariant and connected communication graph. These conditions are not practical for a wide variety of multi-agent systems. In this paper we propose a new game theoretical approach for addressing distributed optimization problems that permits relaxations in the structure of the communication graph.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426086</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Estimation ; Games ; Heuristic algorithms ; Multiagent systems ; Nash equilibrium ; Optimization</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.7764-7769</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Na Li</creatorcontrib><creatorcontrib>Marden, J. R.</creatorcontrib><title>Designing games for distributed optimization with a time varying communication graph</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>The central goal in multi-agent systems is to engineer a decision making architecture where agents make independent decisions in response to local information while ensuring that the emergent global behavior is desirable with respect to a given system level objective. Our previous work identified a systematic methodology for such a task using the framework of state based games. One core advantage of the approach is that it provides a two step process that can be decoupled by utilizing specific classes of games. Exploiting this decomposition could lead to a rich class of distributed learning algorithm. However, a drawback of our previous approach is the dependence on a time-invariant and connected communication graph. These conditions are not practical for a wide variety of multi-agent systems. In this paper we propose a new game theoretical approach for addressing distributed optimization problems that permits relaxations in the structure of the communication graph.</description><subject>Algorithm design and analysis</subject><subject>Estimation</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Multiagent systems</subject><subject>Nash equilibrium</subject><subject>Optimization</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UEtLAzEYjKhgW3sXvOQP7PrlnRxl6wsKXuq5ZLPJNuI-2KSK_norradhhplhGIRuCJSEgLmrVlVJgdBScipByzM0J1wqRkEydo6WRul_LvQFmgExpKCUyCs0T-kdADRIOUOblU-x7WPf4tZ2PuEwTLiJKU-x3mff4GHMsYs_Nsehx18x77DFB8XjTzt9_8Xc0HX7Prqjo53suLtGl8F-JL884QK9PT5squdi_fr0Ut2vi0iUyAXztdeGc-DGU1A8CCGMFVQE3ShZO-eIsIEwLppaSqWEAwrCMdo4EzzUbIFuj73Re78dp9gdNm1Pj7Bfc7hTUA</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Na Li</creator><creator>Marden, J. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>Designing games for distributed optimization with a time varying communication graph</title><author>Na Li ; Marden, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3ebe8944049e2074f5559a525f8d76bccc15af1345db66775c0205c32dc9fe0b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Estimation</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Multiagent systems</topic><topic>Nash equilibrium</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Na Li</creatorcontrib><creatorcontrib>Marden, J. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Na Li</au><au>Marden, J. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Designing games for distributed optimization with a time varying communication graph</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>7764</spage><epage>7769</epage><pages>7764-7769</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>The central goal in multi-agent systems is to engineer a decision making architecture where agents make independent decisions in response to local information while ensuring that the emergent global behavior is desirable with respect to a given system level objective. Our previous work identified a systematic methodology for such a task using the framework of state based games. One core advantage of the approach is that it provides a two step process that can be decoupled by utilizing specific classes of games. Exploiting this decomposition could lead to a rich class of distributed learning algorithm. However, a drawback of our previous approach is the dependence on a time-invariant and connected communication graph. These conditions are not practical for a wide variety of multi-agent systems. In this paper we propose a new game theoretical approach for addressing distributed optimization problems that permits relaxations in the structure of the communication graph.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426086</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.7764-7769
issn 0191-2216
language eng
recordid cdi_ieee_primary_6426086
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Estimation
Games
Heuristic algorithms
Multiagent systems
Nash equilibrium
Optimization
title Designing games for distributed optimization with a time varying communication graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Designing%20games%20for%20distributed%20optimization%20with%20a%20time%20varying%20communication%20graph&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Na%20Li&rft.date=2012-12&rft.spage=7764&rft.epage=7769&rft.pages=7764-7769&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426086&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&rft_dat=%3Cieee_6IE%3E6426086%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3ebe8944049e2074f5559a525f8d76bccc15af1345db66775c0205c32dc9fe0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426086&rfr_iscdi=true