Loading…
A Shahshahani Gradient based extremum seeking scheme
We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5109 |
container_issue | |
container_start_page | 5104 |
container_title | |
container_volume | |
creator | Poveda, J. Quijano, N. |
description | We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation. |
doi_str_mv | 10.1109/CDC.2012.6426134 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426134</ieee_id><sourcerecordid>6426134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3ad9da7093b1d9762d2aca6e4320b8f3b500847430310948efd8768d8ad7a7d3</originalsourceid><addsrcrecordid>eNo1j01Lw0AURUdUsK3dC27mDyS-mTeZj2WJtgoFF3ZfXjovZtQEyVTQf2_Aurhc7uZyjhA3CkqlINzV93WpQenSGm0VmjMxV8Y61GARz8UyOP-_K38hZqCCKrRW9krMc34DAA_WzoRZyZeOujyFhiQ3I8XEw1E2lDlK_j6O3H_1MjO_p-FV5kPHPV-Ly5Y-Mi9PvRC79cOufiy2z5unerUtknLVsUCKIZKDgI2KwVkdNR3IspmoGt9iU00UxhkEnJSM5zZ6Z330FB25iAtx-3ebmHn_Oaaexp_9SRh_ARoHRdM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Shahshahani Gradient based extremum seeking scheme</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Poveda, J. ; Quijano, N.</creator><creatorcontrib>Poveda, J. ; Quijano, N.</creatorcontrib><description>We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426134</identifier><language>eng</language><publisher>IEEE</publisher><subject>Games ; Optimization ; Sociology ; Stability analysis ; Statistics ; Trajectory ; Vectors</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.5104-5109</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Poveda, J.</creatorcontrib><creatorcontrib>Quijano, N.</creatorcontrib><title>A Shahshahani Gradient based extremum seeking scheme</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.</description><subject>Games</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Stability analysis</subject><subject>Statistics</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AURUdUsK3dC27mDyS-mTeZj2WJtgoFF3ZfXjovZtQEyVTQf2_Aurhc7uZyjhA3CkqlINzV93WpQenSGm0VmjMxV8Y61GARz8UyOP-_K38hZqCCKrRW9krMc34DAA_WzoRZyZeOujyFhiQ3I8XEw1E2lDlK_j6O3H_1MjO_p-FV5kPHPV-Ly5Y-Mi9PvRC79cOufiy2z5unerUtknLVsUCKIZKDgI2KwVkdNR3IspmoGt9iU00UxhkEnJSM5zZ6Z330FB25iAtx-3ebmHn_Oaaexp_9SRh_ARoHRdM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Poveda, J.</creator><creator>Quijano, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>A Shahshahani Gradient based extremum seeking scheme</title><author>Poveda, J. ; Quijano, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3ad9da7093b1d9762d2aca6e4320b8f3b500847430310948efd8768d8ad7a7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Games</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Stability analysis</topic><topic>Statistics</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Poveda, J.</creatorcontrib><creatorcontrib>Quijano, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poveda, J.</au><au>Quijano, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Shahshahani Gradient based extremum seeking scheme</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>5104</spage><epage>5109</epage><pages>5104-5109</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426134</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.5104-5109 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_6426134 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Games Optimization Sociology Stability analysis Statistics Trajectory Vectors |
title | A Shahshahani Gradient based extremum seeking scheme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Shahshahani%20Gradient%20based%20extremum%20seeking%20scheme&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Poveda,%20J.&rft.date=2012-12&rft.spage=5104&rft.epage=5109&rft.pages=5104-5109&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426134&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&rft_dat=%3Cieee_6IE%3E6426134%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3ad9da7093b1d9762d2aca6e4320b8f3b500847430310948efd8768d8ad7a7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426134&rfr_iscdi=true |