Loading…

A Shahshahani Gradient based extremum seeking scheme

We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers...

Full description

Saved in:
Bibliographic Details
Main Authors: Poveda, J., Quijano, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5109
container_issue
container_start_page 5104
container_title
container_volume
creator Poveda, J.
Quijano, N.
description We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.
doi_str_mv 10.1109/CDC.2012.6426134
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6426134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6426134</ieee_id><sourcerecordid>6426134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3ad9da7093b1d9762d2aca6e4320b8f3b500847430310948efd8768d8ad7a7d3</originalsourceid><addsrcrecordid>eNo1j01Lw0AURUdUsK3dC27mDyS-mTeZj2WJtgoFF3ZfXjovZtQEyVTQf2_Aurhc7uZyjhA3CkqlINzV93WpQenSGm0VmjMxV8Y61GARz8UyOP-_K38hZqCCKrRW9krMc34DAA_WzoRZyZeOujyFhiQ3I8XEw1E2lDlK_j6O3H_1MjO_p-FV5kPHPV-Ly5Y-Mi9PvRC79cOufiy2z5unerUtknLVsUCKIZKDgI2KwVkdNR3IspmoGt9iU00UxhkEnJSM5zZ6Z330FB25iAtx-3ebmHn_Oaaexp_9SRh_ARoHRdM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Shahshahani Gradient based extremum seeking scheme</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Poveda, J. ; Quijano, N.</creator><creatorcontrib>Poveda, J. ; Quijano, N.</creatorcontrib><description>We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781467320658</identifier><identifier>ISBN: 146732065X</identifier><identifier>EISBN: 1467320633</identifier><identifier>EISBN: 1467320668</identifier><identifier>EISBN: 9781467320634</identifier><identifier>EISBN: 9781467320665</identifier><identifier>EISBN: 9781467320641</identifier><identifier>EISBN: 1467320641</identifier><identifier>DOI: 10.1109/CDC.2012.6426134</identifier><language>eng</language><publisher>IEEE</publisher><subject>Games ; Optimization ; Sociology ; Stability analysis ; Statistics ; Trajectory ; Vectors</subject><ispartof>2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.5104-5109</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6426134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6426134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Poveda, J.</creatorcontrib><creatorcontrib>Quijano, N.</creatorcontrib><title>A Shahshahani Gradient based extremum seeking scheme</title><title>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</title><addtitle>CDC</addtitle><description>We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.</description><subject>Games</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Stability analysis</subject><subject>Statistics</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><isbn>1467320633</isbn><isbn>1467320668</isbn><isbn>9781467320634</isbn><isbn>9781467320665</isbn><isbn>9781467320641</isbn><isbn>1467320641</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AURUdUsK3dC27mDyS-mTeZj2WJtgoFF3ZfXjovZtQEyVTQf2_Aurhc7uZyjhA3CkqlINzV93WpQenSGm0VmjMxV8Y61GARz8UyOP-_K38hZqCCKrRW9krMc34DAA_WzoRZyZeOujyFhiQ3I8XEw1E2lDlK_j6O3H_1MjO_p-FV5kPHPV-Ly5Y-Mi9PvRC79cOufiy2z5unerUtknLVsUCKIZKDgI2KwVkdNR3IspmoGt9iU00UxhkEnJSM5zZ6Z330FB25iAtx-3ebmHn_Oaaexp_9SRh_ARoHRdM</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Poveda, J.</creator><creator>Quijano, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201212</creationdate><title>A Shahshahani Gradient based extremum seeking scheme</title><author>Poveda, J. ; Quijano, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3ad9da7093b1d9762d2aca6e4320b8f3b500847430310948efd8768d8ad7a7d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Games</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Stability analysis</topic><topic>Statistics</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Poveda, J.</creatorcontrib><creatorcontrib>Quijano, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poveda, J.</au><au>Quijano, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Shahshahani Gradient based extremum seeking scheme</atitle><btitle>2012 IEEE 51st IEEE Conference on Decision and Control (CDC)</btitle><stitle>CDC</stitle><date>2012-12</date><risdate>2012</risdate><spage>5104</spage><epage>5109</epage><pages>5104-5109</pages><issn>0191-2216</issn><isbn>9781467320658</isbn><isbn>146732065X</isbn><eisbn>1467320633</eisbn><eisbn>1467320668</eisbn><eisbn>9781467320634</eisbn><eisbn>9781467320665</eisbn><eisbn>9781467320641</eisbn><eisbn>1467320641</eisbn><abstract>We present a novel scheme of a deterministic continuous extremum seeking control based on evolutionary game theory (EGT), which allows the optimization in real-time of non-modeled multivariable dynamic systems under inequality and equality constraints. Unlike traditional extremum seeking controllers, which use classical Euclidean gradient-based optimization methods, the scheme proposed is based on the Shahshahani Gradient, which emerges in some evolutionary games. The notion of maximal in the plant and its stability properties are correlated with the concepts of Nash equilibrium and evolutionarily stable states (ESS). The implementation of the algorithm is illustrated via simulation.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2012.6426134</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, p.5104-5109
issn 0191-2216
language eng
recordid cdi_ieee_primary_6426134
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Games
Optimization
Sociology
Stability analysis
Statistics
Trajectory
Vectors
title A Shahshahani Gradient based extremum seeking scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Shahshahani%20Gradient%20based%20extremum%20seeking%20scheme&rft.btitle=2012%20IEEE%2051st%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)&rft.au=Poveda,%20J.&rft.date=2012-12&rft.spage=5104&rft.epage=5109&rft.pages=5104-5109&rft.issn=0191-2216&rft.isbn=9781467320658&rft.isbn_list=146732065X&rft_id=info:doi/10.1109/CDC.2012.6426134&rft.eisbn=1467320633&rft.eisbn_list=1467320668&rft.eisbn_list=9781467320634&rft.eisbn_list=9781467320665&rft.eisbn_list=9781467320641&rft.eisbn_list=1467320641&rft_dat=%3Cieee_6IE%3E6426134%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3ad9da7093b1d9762d2aca6e4320b8f3b500847430310948efd8768d8ad7a7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6426134&rfr_iscdi=true