Loading…
Segmentation of the pulmonary vascular tree
A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region gr...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | eng ; spa |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Prieto, Juan-Carlos Revol-Muller, Chantal Odet, Christophe Orkisz, Maciej Romanello, Carolina Perez Hoyos, Marcela Hernandez Romanello, Vanessa Perez |
description | A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels. |
doi_str_mv | 10.1109/CLEI.2012.6427119 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6427119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6427119</ieee_id><sourcerecordid>6427119</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-86867ffa35b08e52f748c12b89716048ae3837434f47b7930e8ea561dc81b95d3</originalsourceid><addsrcrecordid>eNo1j0FLw0AQhVdEUGt-gHjJXRJndjc7s0cJtRYCHtRz2aSzGkmTkqSC_96C9fR4h-_xPaVuEXJE8A9ltVznGlDnzmpC9GfqGq0jA-Q1nKvEE_936y9VMk1fAHBknWa8Uvev8rGTfg5zO_TpENP5U9L9odsNfRh_0u8wNYcujOk8ityoixi6SZJTLtT70_KtfM6ql9W6fKyyFqmYM3bsKMZgihpYCh3JcoO6Zk_owHIQw4assdFSTd6AsITC4bZhrH2xNQt197fbishmP7a7o8rm9M_8AsIiQfY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmentation of the pulmonary vascular tree</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Prieto, Juan-Carlos ; Revol-Muller, Chantal ; Odet, Christophe ; Orkisz, Maciej ; Romanello, Carolina Perez ; Hoyos, Marcela Hernandez ; Romanello, Vanessa Perez</creator><creatorcontrib>Prieto, Juan-Carlos ; Revol-Muller, Chantal ; Odet, Christophe ; Orkisz, Maciej ; Romanello, Carolina Perez ; Hoyos, Marcela Hernandez ; Romanello, Vanessa Perez</creatorcontrib><description>A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.</description><identifier>ISBN: 9781467307949</identifier><identifier>ISBN: 1467307947</identifier><identifier>EISBN: 1467307920</identifier><identifier>EISBN: 1467307939</identifier><identifier>EISBN: 9781467307932</identifier><identifier>EISBN: 9781467307925</identifier><identifier>DOI: 10.1109/CLEI.2012.6427119</identifier><language>eng ; spa</language><publisher>IEEE</publisher><subject>Biomedical imaging ; hessian matrix ; Image color analysis ; Image segmentation ; Lungs ; Pathology ; pulmonary vascular tree ; segmentation ; Silicon compounds ; Tomography ; vesselness</subject><ispartof>2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6427119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6427119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prieto, Juan-Carlos</creatorcontrib><creatorcontrib>Revol-Muller, Chantal</creatorcontrib><creatorcontrib>Odet, Christophe</creatorcontrib><creatorcontrib>Orkisz, Maciej</creatorcontrib><creatorcontrib>Romanello, Carolina Perez</creatorcontrib><creatorcontrib>Hoyos, Marcela Hernandez</creatorcontrib><creatorcontrib>Romanello, Vanessa Perez</creatorcontrib><title>Segmentation of the pulmonary vascular tree</title><title>2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)</title><addtitle>CLEI</addtitle><description>A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.</description><subject>Biomedical imaging</subject><subject>hessian matrix</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Lungs</subject><subject>Pathology</subject><subject>pulmonary vascular tree</subject><subject>segmentation</subject><subject>Silicon compounds</subject><subject>Tomography</subject><subject>vesselness</subject><isbn>9781467307949</isbn><isbn>1467307947</isbn><isbn>1467307920</isbn><isbn>1467307939</isbn><isbn>9781467307932</isbn><isbn>9781467307925</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j0FLw0AQhVdEUGt-gHjJXRJndjc7s0cJtRYCHtRz2aSzGkmTkqSC_96C9fR4h-_xPaVuEXJE8A9ltVznGlDnzmpC9GfqGq0jA-Q1nKvEE_936y9VMk1fAHBknWa8Uvev8rGTfg5zO_TpENP5U9L9odsNfRh_0u8wNYcujOk8ityoixi6SZJTLtT70_KtfM6ql9W6fKyyFqmYM3bsKMZgihpYCh3JcoO6Zk_owHIQw4assdFSTd6AsITC4bZhrH2xNQt197fbishmP7a7o8rm9M_8AsIiQfY</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Prieto, Juan-Carlos</creator><creator>Revol-Muller, Chantal</creator><creator>Odet, Christophe</creator><creator>Orkisz, Maciej</creator><creator>Romanello, Carolina Perez</creator><creator>Hoyos, Marcela Hernandez</creator><creator>Romanello, Vanessa Perez</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Segmentation of the pulmonary vascular tree</title><author>Prieto, Juan-Carlos ; Revol-Muller, Chantal ; Odet, Christophe ; Orkisz, Maciej ; Romanello, Carolina Perez ; Hoyos, Marcela Hernandez ; Romanello, Vanessa Perez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-86867ffa35b08e52f748c12b89716048ae3837434f47b7930e8ea561dc81b95d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; spa</language><creationdate>2012</creationdate><topic>Biomedical imaging</topic><topic>hessian matrix</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Lungs</topic><topic>Pathology</topic><topic>pulmonary vascular tree</topic><topic>segmentation</topic><topic>Silicon compounds</topic><topic>Tomography</topic><topic>vesselness</topic><toplevel>online_resources</toplevel><creatorcontrib>Prieto, Juan-Carlos</creatorcontrib><creatorcontrib>Revol-Muller, Chantal</creatorcontrib><creatorcontrib>Odet, Christophe</creatorcontrib><creatorcontrib>Orkisz, Maciej</creatorcontrib><creatorcontrib>Romanello, Carolina Perez</creatorcontrib><creatorcontrib>Hoyos, Marcela Hernandez</creatorcontrib><creatorcontrib>Romanello, Vanessa Perez</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prieto, Juan-Carlos</au><au>Revol-Muller, Chantal</au><au>Odet, Christophe</au><au>Orkisz, Maciej</au><au>Romanello, Carolina Perez</au><au>Hoyos, Marcela Hernandez</au><au>Romanello, Vanessa Perez</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmentation of the pulmonary vascular tree</atitle><btitle>2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)</btitle><stitle>CLEI</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467307949</isbn><isbn>1467307947</isbn><eisbn>1467307920</eisbn><eisbn>1467307939</eisbn><eisbn>9781467307932</eisbn><eisbn>9781467307925</eisbn><abstract>A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.</abstract><pub>IEEE</pub><doi>10.1109/CLEI.2012.6427119</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467307949 |
ispartof | 2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), 2012, p.1-7 |
issn | |
language | eng ; spa |
recordid | cdi_ieee_primary_6427119 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical imaging hessian matrix Image color analysis Image segmentation Lungs Pathology pulmonary vascular tree segmentation Silicon compounds Tomography vesselness |
title | Segmentation of the pulmonary vascular tree |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmentation%20of%20the%20pulmonary%20vascular%20tree&rft.btitle=2012%20XXXVIII%20Conferencia%20Latinoamericana%20En%20Informatica%20(CLEI)&rft.au=Prieto,%20Juan-Carlos&rft.date=2012-10&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467307949&rft.isbn_list=1467307947&rft_id=info:doi/10.1109/CLEI.2012.6427119&rft.eisbn=1467307920&rft.eisbn_list=1467307939&rft.eisbn_list=9781467307932&rft.eisbn_list=9781467307925&rft_dat=%3Cieee_6IE%3E6427119%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-86867ffa35b08e52f748c12b89716048ae3837434f47b7930e8ea561dc81b95d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6427119&rfr_iscdi=true |