Loading…

Segmentation of the pulmonary vascular tree

A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region gr...

Full description

Saved in:
Bibliographic Details
Main Authors: Prieto, Juan-Carlos, Revol-Muller, Chantal, Odet, Christophe, Orkisz, Maciej, Romanello, Carolina Perez, Hoyos, Marcela Hernandez, Romanello, Vanessa Perez
Format: Conference Proceeding
Language:eng ; spa
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Prieto, Juan-Carlos
Revol-Muller, Chantal
Odet, Christophe
Orkisz, Maciej
Romanello, Carolina Perez
Hoyos, Marcela Hernandez
Romanello, Vanessa Perez
description A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.
doi_str_mv 10.1109/CLEI.2012.6427119
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6427119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6427119</ieee_id><sourcerecordid>6427119</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-86867ffa35b08e52f748c12b89716048ae3837434f47b7930e8ea561dc81b95d3</originalsourceid><addsrcrecordid>eNo1j0FLw0AQhVdEUGt-gHjJXRJndjc7s0cJtRYCHtRz2aSzGkmTkqSC_96C9fR4h-_xPaVuEXJE8A9ltVznGlDnzmpC9GfqGq0jA-Q1nKvEE_936y9VMk1fAHBknWa8Uvev8rGTfg5zO_TpENP5U9L9odsNfRh_0u8wNYcujOk8ityoixi6SZJTLtT70_KtfM6ql9W6fKyyFqmYM3bsKMZgihpYCh3JcoO6Zk_owHIQw4assdFSTd6AsITC4bZhrH2xNQt197fbishmP7a7o8rm9M_8AsIiQfY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmentation of the pulmonary vascular tree</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Prieto, Juan-Carlos ; Revol-Muller, Chantal ; Odet, Christophe ; Orkisz, Maciej ; Romanello, Carolina Perez ; Hoyos, Marcela Hernandez ; Romanello, Vanessa Perez</creator><creatorcontrib>Prieto, Juan-Carlos ; Revol-Muller, Chantal ; Odet, Christophe ; Orkisz, Maciej ; Romanello, Carolina Perez ; Hoyos, Marcela Hernandez ; Romanello, Vanessa Perez</creatorcontrib><description>A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.</description><identifier>ISBN: 9781467307949</identifier><identifier>ISBN: 1467307947</identifier><identifier>EISBN: 1467307920</identifier><identifier>EISBN: 1467307939</identifier><identifier>EISBN: 9781467307932</identifier><identifier>EISBN: 9781467307925</identifier><identifier>DOI: 10.1109/CLEI.2012.6427119</identifier><language>eng ; spa</language><publisher>IEEE</publisher><subject>Biomedical imaging ; hessian matrix ; Image color analysis ; Image segmentation ; Lungs ; Pathology ; pulmonary vascular tree ; segmentation ; Silicon compounds ; Tomography ; vesselness</subject><ispartof>2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6427119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6427119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prieto, Juan-Carlos</creatorcontrib><creatorcontrib>Revol-Muller, Chantal</creatorcontrib><creatorcontrib>Odet, Christophe</creatorcontrib><creatorcontrib>Orkisz, Maciej</creatorcontrib><creatorcontrib>Romanello, Carolina Perez</creatorcontrib><creatorcontrib>Hoyos, Marcela Hernandez</creatorcontrib><creatorcontrib>Romanello, Vanessa Perez</creatorcontrib><title>Segmentation of the pulmonary vascular tree</title><title>2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)</title><addtitle>CLEI</addtitle><description>A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.</description><subject>Biomedical imaging</subject><subject>hessian matrix</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Lungs</subject><subject>Pathology</subject><subject>pulmonary vascular tree</subject><subject>segmentation</subject><subject>Silicon compounds</subject><subject>Tomography</subject><subject>vesselness</subject><isbn>9781467307949</isbn><isbn>1467307947</isbn><isbn>1467307920</isbn><isbn>1467307939</isbn><isbn>9781467307932</isbn><isbn>9781467307925</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j0FLw0AQhVdEUGt-gHjJXRJndjc7s0cJtRYCHtRz2aSzGkmTkqSC_96C9fR4h-_xPaVuEXJE8A9ltVznGlDnzmpC9GfqGq0jA-Q1nKvEE_936y9VMk1fAHBknWa8Uvev8rGTfg5zO_TpENP5U9L9odsNfRh_0u8wNYcujOk8ityoixi6SZJTLtT70_KtfM6ql9W6fKyyFqmYM3bsKMZgihpYCh3JcoO6Zk_owHIQw4assdFSTd6AsITC4bZhrH2xNQt197fbishmP7a7o8rm9M_8AsIiQfY</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Prieto, Juan-Carlos</creator><creator>Revol-Muller, Chantal</creator><creator>Odet, Christophe</creator><creator>Orkisz, Maciej</creator><creator>Romanello, Carolina Perez</creator><creator>Hoyos, Marcela Hernandez</creator><creator>Romanello, Vanessa Perez</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Segmentation of the pulmonary vascular tree</title><author>Prieto, Juan-Carlos ; Revol-Muller, Chantal ; Odet, Christophe ; Orkisz, Maciej ; Romanello, Carolina Perez ; Hoyos, Marcela Hernandez ; Romanello, Vanessa Perez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-86867ffa35b08e52f748c12b89716048ae3837434f47b7930e8ea561dc81b95d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; spa</language><creationdate>2012</creationdate><topic>Biomedical imaging</topic><topic>hessian matrix</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Lungs</topic><topic>Pathology</topic><topic>pulmonary vascular tree</topic><topic>segmentation</topic><topic>Silicon compounds</topic><topic>Tomography</topic><topic>vesselness</topic><toplevel>online_resources</toplevel><creatorcontrib>Prieto, Juan-Carlos</creatorcontrib><creatorcontrib>Revol-Muller, Chantal</creatorcontrib><creatorcontrib>Odet, Christophe</creatorcontrib><creatorcontrib>Orkisz, Maciej</creatorcontrib><creatorcontrib>Romanello, Carolina Perez</creatorcontrib><creatorcontrib>Hoyos, Marcela Hernandez</creatorcontrib><creatorcontrib>Romanello, Vanessa Perez</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prieto, Juan-Carlos</au><au>Revol-Muller, Chantal</au><au>Odet, Christophe</au><au>Orkisz, Maciej</au><au>Romanello, Carolina Perez</au><au>Hoyos, Marcela Hernandez</au><au>Romanello, Vanessa Perez</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmentation of the pulmonary vascular tree</atitle><btitle>2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI)</btitle><stitle>CLEI</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467307949</isbn><isbn>1467307947</isbn><eisbn>1467307920</eisbn><eisbn>1467307939</eisbn><eisbn>9781467307932</eisbn><eisbn>9781467307925</eisbn><abstract>A method to semi-automatically segment the pulmonary vascular tree from computed axial tomography (CAT) images is presented. The main goal is to aid the diagnosis and treatment of acute respiratory distress syndrome and pulmonary embolism. The proposed methodology is based on a variational region growing method and a multi-scale vessel enhancement filter. Preliminary studies were made with a 20 CAT image dataset that included healthy and pathological lung scans. The results were satisfactory, although in some cases vessels were not correctly distinguished from other thin structures such as mucus-filled bronchi, nodules and airway walls connected to vessels.</abstract><pub>IEEE</pub><doi>10.1109/CLEI.2012.6427119</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467307949
ispartof 2012 XXXVIII Conferencia Latinoamericana En Informatica (CLEI), 2012, p.1-7
issn
language eng ; spa
recordid cdi_ieee_primary_6427119
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
hessian matrix
Image color analysis
Image segmentation
Lungs
Pathology
pulmonary vascular tree
segmentation
Silicon compounds
Tomography
vesselness
title Segmentation of the pulmonary vascular tree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmentation%20of%20the%20pulmonary%20vascular%20tree&rft.btitle=2012%20XXXVIII%20Conferencia%20Latinoamericana%20En%20Informatica%20(CLEI)&rft.au=Prieto,%20Juan-Carlos&rft.date=2012-10&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467307949&rft.isbn_list=1467307947&rft_id=info:doi/10.1109/CLEI.2012.6427119&rft.eisbn=1467307920&rft.eisbn_list=1467307939&rft.eisbn_list=9781467307932&rft.eisbn_list=9781467307925&rft_dat=%3Cieee_6IE%3E6427119%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-86867ffa35b08e52f748c12b89716048ae3837434f47b7930e8ea561dc81b95d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6427119&rfr_iscdi=true