Loading…

Virtual Machine packing algorithms for lower power consumption

Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and co...

Full description

Saved in:
Bibliographic Details
Main Authors: Takahashi, S., Takefusa, A., Shigeno, M., Nakada, H., Kudoh, T., Yoshise, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 168
container_issue
container_start_page 161
container_title
container_volume
creator Takahashi, S.
Takefusa, A.
Shigeno, M.
Nakada, H.
Kudoh, T.
Yoshise, A.
description Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.
doi_str_mv 10.1109/CloudCom.2012.6427493
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6427493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6427493</ieee_id><sourcerecordid>6427493</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-194521f7e875a53bbfbee5d37426ad75c5202abdbe202c88dbf97095d898a7823</originalsourceid><addsrcrecordid>eNpNj81KxDAcxCMiKGufQIS8QGv--WiSiyDFL1jxol6XpEl3o21Tkhbx7V11D17mx8xhmEHoEkgFQPRV08fFNXGoKAFa1ZxKrtkRKrRUwGvJuCBaHP_3AOoUFTm_E0KAsJ_wDF2_hTQvpsdPpt2F0ePJtB9h3GLTb2MK827IuIsJ9_HTJzz9ahvHvAzTHOJ4jk4602dfHLhCr3e3L81DuX6-f2xu1mWgHOYSNBcUOumVFEYwazvrvXBMclobJ0UrKKHGOuv3bJVyttNyv98prYxUlK3QxV9v8N5vphQGk742h9fsGyw_TOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Virtual Machine packing algorithms for lower power consumption</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takahashi, S. ; Takefusa, A. ; Shigeno, M. ; Nakada, H. ; Kudoh, T. ; Yoshise, A.</creator><creatorcontrib>Takahashi, S. ; Takefusa, A. ; Shigeno, M. ; Nakada, H. ; Kudoh, T. ; Yoshise, A.</creatorcontrib><description>Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.</description><identifier>ISBN: 9781467345118</identifier><identifier>ISBN: 1467345113</identifier><identifier>EISBN: 9781467345095</identifier><identifier>EISBN: 1467345091</identifier><identifier>EISBN: 9781467345101</identifier><identifier>EISBN: 1467345105</identifier><identifier>DOI: 10.1109/CloudCom.2012.6427493</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Degradation ; Heuristic algorithms ; IP networks ; Linear programming ; Power demand ; Servers</subject><ispartof>4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, 2012, p.161-168</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6427493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6427493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, S.</creatorcontrib><creatorcontrib>Takefusa, A.</creatorcontrib><creatorcontrib>Shigeno, M.</creatorcontrib><creatorcontrib>Nakada, H.</creatorcontrib><creatorcontrib>Kudoh, T.</creatorcontrib><creatorcontrib>Yoshise, A.</creatorcontrib><title>Virtual Machine packing algorithms for lower power consumption</title><title>4th IEEE International Conference on Cloud Computing Technology and Science Proceedings</title><addtitle>CloudCom</addtitle><description>Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.</description><subject>Cloud computing</subject><subject>Degradation</subject><subject>Heuristic algorithms</subject><subject>IP networks</subject><subject>Linear programming</subject><subject>Power demand</subject><subject>Servers</subject><isbn>9781467345118</isbn><isbn>1467345113</isbn><isbn>9781467345095</isbn><isbn>1467345091</isbn><isbn>9781467345101</isbn><isbn>1467345105</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNj81KxDAcxCMiKGufQIS8QGv--WiSiyDFL1jxol6XpEl3o21Tkhbx7V11D17mx8xhmEHoEkgFQPRV08fFNXGoKAFa1ZxKrtkRKrRUwGvJuCBaHP_3AOoUFTm_E0KAsJ_wDF2_hTQvpsdPpt2F0ePJtB9h3GLTb2MK827IuIsJ9_HTJzz9ahvHvAzTHOJ4jk4602dfHLhCr3e3L81DuX6-f2xu1mWgHOYSNBcUOumVFEYwazvrvXBMclobJ0UrKKHGOuv3bJVyttNyv98prYxUlK3QxV9v8N5vphQGk742h9fsGyw_TOQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Takahashi, S.</creator><creator>Takefusa, A.</creator><creator>Shigeno, M.</creator><creator>Nakada, H.</creator><creator>Kudoh, T.</creator><creator>Yoshise, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Virtual Machine packing algorithms for lower power consumption</title><author>Takahashi, S. ; Takefusa, A. ; Shigeno, M. ; Nakada, H. ; Kudoh, T. ; Yoshise, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-194521f7e875a53bbfbee5d37426ad75c5202abdbe202c88dbf97095d898a7823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cloud computing</topic><topic>Degradation</topic><topic>Heuristic algorithms</topic><topic>IP networks</topic><topic>Linear programming</topic><topic>Power demand</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, S.</creatorcontrib><creatorcontrib>Takefusa, A.</creatorcontrib><creatorcontrib>Shigeno, M.</creatorcontrib><creatorcontrib>Nakada, H.</creatorcontrib><creatorcontrib>Kudoh, T.</creatorcontrib><creatorcontrib>Yoshise, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, S.</au><au>Takefusa, A.</au><au>Shigeno, M.</au><au>Nakada, H.</au><au>Kudoh, T.</au><au>Yoshise, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Virtual Machine packing algorithms for lower power consumption</atitle><btitle>4th IEEE International Conference on Cloud Computing Technology and Science Proceedings</btitle><stitle>CloudCom</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>161</spage><epage>168</epage><pages>161-168</pages><isbn>9781467345118</isbn><isbn>1467345113</isbn><eisbn>9781467345095</eisbn><eisbn>1467345091</eisbn><eisbn>9781467345101</eisbn><eisbn>1467345105</eisbn><abstract>Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.</abstract><pub>IEEE</pub><doi>10.1109/CloudCom.2012.6427493</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467345118
ispartof 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, 2012, p.161-168
issn
language eng
recordid cdi_ieee_primary_6427493
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cloud computing
Degradation
Heuristic algorithms
IP networks
Linear programming
Power demand
Servers
title Virtual Machine packing algorithms for lower power consumption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Virtual%20Machine%20packing%20algorithms%20for%20lower%20power%20consumption&rft.btitle=4th%20IEEE%20International%20Conference%20on%20Cloud%20Computing%20Technology%20and%20Science%20Proceedings&rft.au=Takahashi,%20S.&rft.date=2012-01-01&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.isbn=9781467345118&rft.isbn_list=1467345113&rft_id=info:doi/10.1109/CloudCom.2012.6427493&rft.eisbn=9781467345095&rft.eisbn_list=1467345091&rft.eisbn_list=9781467345101&rft.eisbn_list=1467345105&rft_dat=%3Cieee_6IE%3E6427493%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-194521f7e875a53bbfbee5d37426ad75c5202abdbe202c88dbf97095d898a7823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6427493&rfr_iscdi=true