Loading…
Virtual Machine packing algorithms for lower power consumption
Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and co...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 168 |
container_issue | |
container_start_page | 161 |
container_title | |
container_volume | |
creator | Takahashi, S. Takefusa, A. Shigeno, M. Nakada, H. Kudoh, T. Yoshise, A. |
description | Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience. |
doi_str_mv | 10.1109/CloudCom.2012.6427493 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6427493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6427493</ieee_id><sourcerecordid>6427493</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-194521f7e875a53bbfbee5d37426ad75c5202abdbe202c88dbf97095d898a7823</originalsourceid><addsrcrecordid>eNpNj81KxDAcxCMiKGufQIS8QGv--WiSiyDFL1jxol6XpEl3o21Tkhbx7V11D17mx8xhmEHoEkgFQPRV08fFNXGoKAFa1ZxKrtkRKrRUwGvJuCBaHP_3AOoUFTm_E0KAsJ_wDF2_hTQvpsdPpt2F0ePJtB9h3GLTb2MK827IuIsJ9_HTJzz9ahvHvAzTHOJ4jk4602dfHLhCr3e3L81DuX6-f2xu1mWgHOYSNBcUOumVFEYwazvrvXBMclobJ0UrKKHGOuv3bJVyttNyv98prYxUlK3QxV9v8N5vphQGk742h9fsGyw_TOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Virtual Machine packing algorithms for lower power consumption</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Takahashi, S. ; Takefusa, A. ; Shigeno, M. ; Nakada, H. ; Kudoh, T. ; Yoshise, A.</creator><creatorcontrib>Takahashi, S. ; Takefusa, A. ; Shigeno, M. ; Nakada, H. ; Kudoh, T. ; Yoshise, A.</creatorcontrib><description>Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.</description><identifier>ISBN: 9781467345118</identifier><identifier>ISBN: 1467345113</identifier><identifier>EISBN: 9781467345095</identifier><identifier>EISBN: 1467345091</identifier><identifier>EISBN: 9781467345101</identifier><identifier>EISBN: 1467345105</identifier><identifier>DOI: 10.1109/CloudCom.2012.6427493</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Degradation ; Heuristic algorithms ; IP networks ; Linear programming ; Power demand ; Servers</subject><ispartof>4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, 2012, p.161-168</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6427493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6427493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takahashi, S.</creatorcontrib><creatorcontrib>Takefusa, A.</creatorcontrib><creatorcontrib>Shigeno, M.</creatorcontrib><creatorcontrib>Nakada, H.</creatorcontrib><creatorcontrib>Kudoh, T.</creatorcontrib><creatorcontrib>Yoshise, A.</creatorcontrib><title>Virtual Machine packing algorithms for lower power consumption</title><title>4th IEEE International Conference on Cloud Computing Technology and Science Proceedings</title><addtitle>CloudCom</addtitle><description>Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.</description><subject>Cloud computing</subject><subject>Degradation</subject><subject>Heuristic algorithms</subject><subject>IP networks</subject><subject>Linear programming</subject><subject>Power demand</subject><subject>Servers</subject><isbn>9781467345118</isbn><isbn>1467345113</isbn><isbn>9781467345095</isbn><isbn>1467345091</isbn><isbn>9781467345101</isbn><isbn>1467345105</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNj81KxDAcxCMiKGufQIS8QGv--WiSiyDFL1jxol6XpEl3o21Tkhbx7V11D17mx8xhmEHoEkgFQPRV08fFNXGoKAFa1ZxKrtkRKrRUwGvJuCBaHP_3AOoUFTm_E0KAsJ_wDF2_hTQvpsdPpt2F0ePJtB9h3GLTb2MK827IuIsJ9_HTJzz9ahvHvAzTHOJ4jk4602dfHLhCr3e3L81DuX6-f2xu1mWgHOYSNBcUOumVFEYwazvrvXBMclobJ0UrKKHGOuv3bJVyttNyv98prYxUlK3QxV9v8N5vphQGk742h9fsGyw_TOQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Takahashi, S.</creator><creator>Takefusa, A.</creator><creator>Shigeno, M.</creator><creator>Nakada, H.</creator><creator>Kudoh, T.</creator><creator>Yoshise, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Virtual Machine packing algorithms for lower power consumption</title><author>Takahashi, S. ; Takefusa, A. ; Shigeno, M. ; Nakada, H. ; Kudoh, T. ; Yoshise, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-194521f7e875a53bbfbee5d37426ad75c5202abdbe202c88dbf97095d898a7823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cloud computing</topic><topic>Degradation</topic><topic>Heuristic algorithms</topic><topic>IP networks</topic><topic>Linear programming</topic><topic>Power demand</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, S.</creatorcontrib><creatorcontrib>Takefusa, A.</creatorcontrib><creatorcontrib>Shigeno, M.</creatorcontrib><creatorcontrib>Nakada, H.</creatorcontrib><creatorcontrib>Kudoh, T.</creatorcontrib><creatorcontrib>Yoshise, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takahashi, S.</au><au>Takefusa, A.</au><au>Shigeno, M.</au><au>Nakada, H.</au><au>Kudoh, T.</au><au>Yoshise, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Virtual Machine packing algorithms for lower power consumption</atitle><btitle>4th IEEE International Conference on Cloud Computing Technology and Science Proceedings</btitle><stitle>CloudCom</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>161</spage><epage>168</epage><pages>161-168</pages><isbn>9781467345118</isbn><isbn>1467345113</isbn><eisbn>9781467345095</eisbn><eisbn>1467345091</eisbn><eisbn>9781467345101</eisbn><eisbn>1467345105</eisbn><abstract>Virtual Machine(VM)-based flexible capacity management is an effective scheme to reduce total power consumption in the data centers. However, there remain the following issues, trade-off between power-saving and user experience, decision on VM packing plans within a feasible calculation time, and collision avoidance for multiple VM live migration processes. In order to resolve these issues, we propose two VM packing algorithms, a matching-based (MBA) and a greedy-type heuristic (GREEDY). MBA enables to decide an optimal plan in polynomial time, while GREEDY is an aggressive packing approach faster than MBA. We investigate the basic performance and the feasibility of proposed algorithms under both artificial and realistic simulation scenarios, respectively. The basic performance experiments show that the algorithms reduce total power consumption by between 18% and 50%, and MBA makes suitable VM packing plans within a feasible calculation time. The feasibility experiments show that the proposed algorithms are feasible to make packing plans for an actual supercomputer, and GREEDY has the advantage in power consumption, but MBA shows the better performance in user experience.</abstract><pub>IEEE</pub><doi>10.1109/CloudCom.2012.6427493</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467345118 |
ispartof | 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, 2012, p.161-168 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6427493 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing Degradation Heuristic algorithms IP networks Linear programming Power demand Servers |
title | Virtual Machine packing algorithms for lower power consumption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Virtual%20Machine%20packing%20algorithms%20for%20lower%20power%20consumption&rft.btitle=4th%20IEEE%20International%20Conference%20on%20Cloud%20Computing%20Technology%20and%20Science%20Proceedings&rft.au=Takahashi,%20S.&rft.date=2012-01-01&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.isbn=9781467345118&rft.isbn_list=1467345113&rft_id=info:doi/10.1109/CloudCom.2012.6427493&rft.eisbn=9781467345095&rft.eisbn_list=1467345091&rft.eisbn_list=9781467345101&rft.eisbn_list=1467345105&rft_dat=%3Cieee_6IE%3E6427493%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-194521f7e875a53bbfbee5d37426ad75c5202abdbe202c88dbf97095d898a7823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6427493&rfr_iscdi=true |