Loading…

Jacobian-based motion planning for climbing robots

This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles...

Full description

Saved in:
Bibliographic Details
Main Authors: Chien-Chou Lin, Shih-Syong Dai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 82
container_issue
container_start_page 79
container_title
container_volume
creator Chien-Chou Lin
Shih-Syong Dai
description This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.
doi_str_mv 10.1109/ISIC.2012.6449712
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6449712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6449712</ieee_id><sourcerecordid>6449712</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-abfc5511bcba79bc6f56d116721b1f9f5129654d26525f2a94865cde626c75043</originalsourceid><addsrcrecordid>eNpVj81KxDAURiMiKGMfQNz0BTrm3ubeNEsp_nQYcKGuhyRNJNI2Q9uNb6_ibFwdzuJ88AlxA3ILIM1d99q1W5SAW1bKaMAzURjdgGJdIzUNnv9zTZeiWJZPKeVPzmjoSuDO-uySnSpnl9CXY15TnsrjYKcpTR9lzHPphzS6X5mzy-tyLS6iHZZQnLgR748Pb-1ztX956tr7fZVA01pZFz0RgPPOauM8R-IegDWCg2giARom1SMTUkRrVMPk-8DIXpNU9Ubc_u2mEMLhOKfRzl-H09P6G838RYs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Jacobian-based motion planning for climbing robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chien-Chou Lin ; Shih-Syong Dai</creator><creatorcontrib>Chien-Chou Lin ; Shih-Syong Dai</creatorcontrib><description>This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.</description><identifier>ISBN: 9781467325875</identifier><identifier>ISBN: 1467325872</identifier><identifier>EISBN: 9781467325882</identifier><identifier>EISBN: 9781467325868</identifier><identifier>EISBN: 1467325864</identifier><identifier>EISBN: 1467325880</identifier><identifier>DOI: 10.1109/ISIC.2012.6449712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Delaunay triangles ; free-climbing robo ; Jacobian matrices ; Jacobian matrix ; Legged locomotion ; motion planning ; path planning ; Planning ; Trajectory</subject><ispartof>2012 International Conference on Information Security and Intelligent Control, 2012, p.79-82</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6449712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6449712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chien-Chou Lin</creatorcontrib><creatorcontrib>Shih-Syong Dai</creatorcontrib><title>Jacobian-based motion planning for climbing robots</title><title>2012 International Conference on Information Security and Intelligent Control</title><addtitle>ISIC</addtitle><description>This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.</description><subject>Algorithm design and analysis</subject><subject>Delaunay triangles</subject><subject>free-climbing robo</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Legged locomotion</subject><subject>motion planning</subject><subject>path planning</subject><subject>Planning</subject><subject>Trajectory</subject><isbn>9781467325875</isbn><isbn>1467325872</isbn><isbn>9781467325882</isbn><isbn>9781467325868</isbn><isbn>1467325864</isbn><isbn>1467325880</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj81KxDAURiMiKGMfQNz0BTrm3ubeNEsp_nQYcKGuhyRNJNI2Q9uNb6_ibFwdzuJ88AlxA3ILIM1d99q1W5SAW1bKaMAzURjdgGJdIzUNnv9zTZeiWJZPKeVPzmjoSuDO-uySnSpnl9CXY15TnsrjYKcpTR9lzHPphzS6X5mzy-tyLS6iHZZQnLgR748Pb-1ztX956tr7fZVA01pZFz0RgPPOauM8R-IegDWCg2giARom1SMTUkRrVMPk-8DIXpNU9Ubc_u2mEMLhOKfRzl-H09P6G838RYs</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Chien-Chou Lin</creator><creator>Shih-Syong Dai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Jacobian-based motion planning for climbing robots</title><author>Chien-Chou Lin ; Shih-Syong Dai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-abfc5511bcba79bc6f56d116721b1f9f5129654d26525f2a94865cde626c75043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Delaunay triangles</topic><topic>free-climbing robo</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Legged locomotion</topic><topic>motion planning</topic><topic>path planning</topic><topic>Planning</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Chien-Chou Lin</creatorcontrib><creatorcontrib>Shih-Syong Dai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chien-Chou Lin</au><au>Shih-Syong Dai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Jacobian-based motion planning for climbing robots</atitle><btitle>2012 International Conference on Information Security and Intelligent Control</btitle><stitle>ISIC</stitle><date>2012-08</date><risdate>2012</risdate><spage>79</spage><epage>82</epage><pages>79-82</pages><isbn>9781467325875</isbn><isbn>1467325872</isbn><eisbn>9781467325882</eisbn><eisbn>9781467325868</eisbn><eisbn>1467325864</eisbn><eisbn>1467325880</eisbn><abstract>This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.</abstract><pub>IEEE</pub><doi>10.1109/ISIC.2012.6449712</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467325875
ispartof 2012 International Conference on Information Security and Intelligent Control, 2012, p.79-82
issn
language eng
recordid cdi_ieee_primary_6449712
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Delaunay triangles
free-climbing robo
Jacobian matrices
Jacobian matrix
Legged locomotion
motion planning
path planning
Planning
Trajectory
title Jacobian-based motion planning for climbing robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Jacobian-based%20motion%20planning%20for%20climbing%20robots&rft.btitle=2012%20International%20Conference%20on%20Information%20Security%20and%20Intelligent%20Control&rft.au=Chien-Chou%20Lin&rft.date=2012-08&rft.spage=79&rft.epage=82&rft.pages=79-82&rft.isbn=9781467325875&rft.isbn_list=1467325872&rft_id=info:doi/10.1109/ISIC.2012.6449712&rft.eisbn=9781467325882&rft.eisbn_list=9781467325868&rft.eisbn_list=1467325864&rft.eisbn_list=1467325880&rft_dat=%3Cieee_6IE%3E6449712%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-abfc5511bcba79bc6f56d116721b1f9f5129654d26525f2a94865cde626c75043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6449712&rfr_iscdi=true