Loading…
Jacobian-based motion planning for climbing robots
This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 82 |
container_issue | |
container_start_page | 79 |
container_title | |
container_volume | |
creator | Chien-Chou Lin Shih-Syong Dai |
description | This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well. |
doi_str_mv | 10.1109/ISIC.2012.6449712 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6449712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6449712</ieee_id><sourcerecordid>6449712</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-abfc5511bcba79bc6f56d116721b1f9f5129654d26525f2a94865cde626c75043</originalsourceid><addsrcrecordid>eNpVj81KxDAURiMiKGMfQNz0BTrm3ubeNEsp_nQYcKGuhyRNJNI2Q9uNb6_ibFwdzuJ88AlxA3ILIM1d99q1W5SAW1bKaMAzURjdgGJdIzUNnv9zTZeiWJZPKeVPzmjoSuDO-uySnSpnl9CXY15TnsrjYKcpTR9lzHPphzS6X5mzy-tyLS6iHZZQnLgR748Pb-1ztX956tr7fZVA01pZFz0RgPPOauM8R-IegDWCg2giARom1SMTUkRrVMPk-8DIXpNU9Ubc_u2mEMLhOKfRzl-H09P6G838RYs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Jacobian-based motion planning for climbing robots</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chien-Chou Lin ; Shih-Syong Dai</creator><creatorcontrib>Chien-Chou Lin ; Shih-Syong Dai</creatorcontrib><description>This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.</description><identifier>ISBN: 9781467325875</identifier><identifier>ISBN: 1467325872</identifier><identifier>EISBN: 9781467325882</identifier><identifier>EISBN: 9781467325868</identifier><identifier>EISBN: 1467325864</identifier><identifier>EISBN: 1467325880</identifier><identifier>DOI: 10.1109/ISIC.2012.6449712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Delaunay triangles ; free-climbing robo ; Jacobian matrices ; Jacobian matrix ; Legged locomotion ; motion planning ; path planning ; Planning ; Trajectory</subject><ispartof>2012 International Conference on Information Security and Intelligent Control, 2012, p.79-82</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6449712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6449712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chien-Chou Lin</creatorcontrib><creatorcontrib>Shih-Syong Dai</creatorcontrib><title>Jacobian-based motion planning for climbing robots</title><title>2012 International Conference on Information Security and Intelligent Control</title><addtitle>ISIC</addtitle><description>This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.</description><subject>Algorithm design and analysis</subject><subject>Delaunay triangles</subject><subject>free-climbing robo</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Legged locomotion</subject><subject>motion planning</subject><subject>path planning</subject><subject>Planning</subject><subject>Trajectory</subject><isbn>9781467325875</isbn><isbn>1467325872</isbn><isbn>9781467325882</isbn><isbn>9781467325868</isbn><isbn>1467325864</isbn><isbn>1467325880</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj81KxDAURiMiKGMfQNz0BTrm3ubeNEsp_nQYcKGuhyRNJNI2Q9uNb6_ibFwdzuJ88AlxA3ILIM1d99q1W5SAW1bKaMAzURjdgGJdIzUNnv9zTZeiWJZPKeVPzmjoSuDO-uySnSpnl9CXY15TnsrjYKcpTR9lzHPphzS6X5mzy-tyLS6iHZZQnLgR748Pb-1ztX956tr7fZVA01pZFz0RgPPOauM8R-IegDWCg2giARom1SMTUkRrVMPk-8DIXpNU9Ubc_u2mEMLhOKfRzl-H09P6G838RYs</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Chien-Chou Lin</creator><creator>Shih-Syong Dai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Jacobian-based motion planning for climbing robots</title><author>Chien-Chou Lin ; Shih-Syong Dai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-abfc5511bcba79bc6f56d116721b1f9f5129654d26525f2a94865cde626c75043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Delaunay triangles</topic><topic>free-climbing robo</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Legged locomotion</topic><topic>motion planning</topic><topic>path planning</topic><topic>Planning</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Chien-Chou Lin</creatorcontrib><creatorcontrib>Shih-Syong Dai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chien-Chou Lin</au><au>Shih-Syong Dai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Jacobian-based motion planning for climbing robots</atitle><btitle>2012 International Conference on Information Security and Intelligent Control</btitle><stitle>ISIC</stitle><date>2012-08</date><risdate>2012</risdate><spage>79</spage><epage>82</epage><pages>79-82</pages><isbn>9781467325875</isbn><isbn>1467325872</isbn><eisbn>9781467325882</eisbn><eisbn>9781467325868</eisbn><eisbn>1467325864</eisbn><eisbn>1467325880</eisbn><abstract>This paper proposes a two-stage planning algorithm for 3-leg free-climbing robots. The algorithm consists of global path planner and local motion planner. Firstly, the proposed algorithm distributes climbing points to Delaunay triangle mesh. The global planner plans a sequence of Delaunay triangles from the start configuration to goal configuration. Then, the latter plans the transition configurations between two adjacent triangles of the trajectory. The local motion algorithm uses the inverse Jacobian matrix to derive the positions and angles of joints for all configurations. Since the proposed algorithm directly uses spatial information of the workspace to plan a path, it is more efficient than configuration-space based approaches. Simulation results show that the proposed algorithm works well.</abstract><pub>IEEE</pub><doi>10.1109/ISIC.2012.6449712</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467325875 |
ispartof | 2012 International Conference on Information Security and Intelligent Control, 2012, p.79-82 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6449712 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Delaunay triangles free-climbing robo Jacobian matrices Jacobian matrix Legged locomotion motion planning path planning Planning Trajectory |
title | Jacobian-based motion planning for climbing robots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Jacobian-based%20motion%20planning%20for%20climbing%20robots&rft.btitle=2012%20International%20Conference%20on%20Information%20Security%20and%20Intelligent%20Control&rft.au=Chien-Chou%20Lin&rft.date=2012-08&rft.spage=79&rft.epage=82&rft.pages=79-82&rft.isbn=9781467325875&rft.isbn_list=1467325872&rft_id=info:doi/10.1109/ISIC.2012.6449712&rft.eisbn=9781467325882&rft.eisbn_list=9781467325868&rft.eisbn_list=1467325864&rft.eisbn_list=1467325880&rft_dat=%3Cieee_6IE%3E6449712%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-abfc5511bcba79bc6f56d116721b1f9f5129654d26525f2a94865cde626c75043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6449712&rfr_iscdi=true |