Loading…
Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis
Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate po...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 745 |
container_issue | |
container_start_page | 742 |
container_title | |
container_volume | |
creator | Wang, X. Gillibert, L. Flin, F. Coeurjolly, D. |
description | Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 . |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6460241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460241</ieee_id><sourcerecordid>6460241</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-73bdc2ba0f9d0e295faa9dbf7c5d0a4d97094d4b8e20131356e239a7af75cc403</originalsourceid><addsrcrecordid>eNotjstKxDAYRuMNrOM8gZu8QCH3NO6Goo4w4EbXw98k1UibliQdmbf3Mq6-xTkcvjO0NroRxhAlBCXmHFWs4bTWQsuLP0aF0pwxqsQlqiiRtBZK0mt0k_MnIYxw2VQotEs6QFmSr10KBx_xYRqW0ZcULM7-ffSxQAlTxFOPuxAhHXH-gNnne7yJGOZ5CPYklAnnOH3hMdg05ZIW-5vFEGE45pBv0VUPQ_br_12ht8eH13Zb716entvNrg5Uy1Jr3jnLOiC9ccQzI3sA47peW-kICGc0McKJrvGMUE65VJ5xAxp6La0VhK_Q3akbvPf7OYXx5_NeCUWYoPwbeNRZ9A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</title><source>IEEE Xplore All Conference Series</source><creator>Wang, X. ; Gillibert, L. ; Flin, F. ; Coeurjolly, D.</creator><creatorcontrib>Wang, X. ; Gillibert, L. ; Flin, F. ; Coeurjolly, D.</creatorcontrib><description>Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Euclidean distance ; Image segmentation ; Labeling ; Materials ; Shape ; Snow ; Surface morphology</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.742-745</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Gillibert, L.</creatorcontrib><creatorcontrib>Flin, F.</creatorcontrib><creatorcontrib>Coeurjolly, D.</creatorcontrib><title>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .</description><subject>Euclidean distance</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Materials</subject><subject>Shape</subject><subject>Snow</subject><subject>Surface morphology</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKxDAYRuMNrOM8gZu8QCH3NO6Goo4w4EbXw98k1UibliQdmbf3Mq6-xTkcvjO0NroRxhAlBCXmHFWs4bTWQsuLP0aF0pwxqsQlqiiRtBZK0mt0k_MnIYxw2VQotEs6QFmSr10KBx_xYRqW0ZcULM7-ffSxQAlTxFOPuxAhHXH-gNnne7yJGOZ5CPYklAnnOH3hMdg05ZIW-5vFEGE45pBv0VUPQ_br_12ht8eH13Zb716entvNrg5Uy1Jr3jnLOiC9ccQzI3sA47peW-kICGc0McKJrvGMUE65VJ5xAxp6La0VhK_Q3akbvPf7OYXx5_NeCUWYoPwbeNRZ9A</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Wang, X.</creator><creator>Gillibert, L.</creator><creator>Flin, F.</creator><creator>Coeurjolly, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</title><author>Wang, X. ; Gillibert, L. ; Flin, F. ; Coeurjolly, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-73bdc2ba0f9d0e295faa9dbf7c5d0a4d97094d4b8e20131356e239a7af75cc403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Euclidean distance</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Materials</topic><topic>Shape</topic><topic>Snow</topic><topic>Surface morphology</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Gillibert, L.</creatorcontrib><creatorcontrib>Flin, F.</creatorcontrib><creatorcontrib>Coeurjolly, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, X.</au><au>Gillibert, L.</au><au>Flin, F.</au><au>Coeurjolly, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>742</spage><epage>745</epage><pages>742-745</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.742-745 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_6460241 |
source | IEEE Xplore All Conference Series |
subjects | Euclidean distance Image segmentation Labeling Materials Shape Snow Surface morphology |
title | Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Curvature-driven%20volumetric%20segmentation%20of%20binary%20shapes:%20An%20application%20to%20snow%20microstructure%20analysis&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Wang,%20X.&rft.date=2012-11&rft.spage=742&rft.epage=745&rft.pages=742-745&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&rft_dat=%3Cieee_CHZPO%3E6460241%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-73bdc2ba0f9d0e295faa9dbf7c5d0a4d97094d4b8e20131356e239a7af75cc403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460241&rfr_iscdi=true |