Loading…

Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis

Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate po...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, X., Gillibert, L., Flin, F., Coeurjolly, D.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 745
container_issue
container_start_page 742
container_title
container_volume
creator Wang, X.
Gillibert, L.
Flin, F.
Coeurjolly, D.
description Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6460241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460241</ieee_id><sourcerecordid>6460241</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-73bdc2ba0f9d0e295faa9dbf7c5d0a4d97094d4b8e20131356e239a7af75cc403</originalsourceid><addsrcrecordid>eNotjstKxDAYRuMNrOM8gZu8QCH3NO6Goo4w4EbXw98k1UibliQdmbf3Mq6-xTkcvjO0NroRxhAlBCXmHFWs4bTWQsuLP0aF0pwxqsQlqiiRtBZK0mt0k_MnIYxw2VQotEs6QFmSr10KBx_xYRqW0ZcULM7-ffSxQAlTxFOPuxAhHXH-gNnne7yJGOZ5CPYklAnnOH3hMdg05ZIW-5vFEGE45pBv0VUPQ_br_12ht8eH13Zb716entvNrg5Uy1Jr3jnLOiC9ccQzI3sA47peW-kICGc0McKJrvGMUE65VJ5xAxp6La0VhK_Q3akbvPf7OYXx5_NeCUWYoPwbeNRZ9A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</title><source>IEEE Xplore All Conference Series</source><creator>Wang, X. ; Gillibert, L. ; Flin, F. ; Coeurjolly, D.</creator><creatorcontrib>Wang, X. ; Gillibert, L. ; Flin, F. ; Coeurjolly, D.</creatorcontrib><description>Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Euclidean distance ; Image segmentation ; Labeling ; Materials ; Shape ; Snow ; Surface morphology</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.742-745</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460241$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Gillibert, L.</creatorcontrib><creatorcontrib>Flin, F.</creatorcontrib><creatorcontrib>Coeurjolly, D.</creatorcontrib><title>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .</description><subject>Euclidean distance</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Materials</subject><subject>Shape</subject><subject>Snow</subject><subject>Surface morphology</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKxDAYRuMNrOM8gZu8QCH3NO6Goo4w4EbXw98k1UibliQdmbf3Mq6-xTkcvjO0NroRxhAlBCXmHFWs4bTWQsuLP0aF0pwxqsQlqiiRtBZK0mt0k_MnIYxw2VQotEs6QFmSr10KBx_xYRqW0ZcULM7-ffSxQAlTxFOPuxAhHXH-gNnne7yJGOZ5CPYklAnnOH3hMdg05ZIW-5vFEGE45pBv0VUPQ_br_12ht8eH13Zb716entvNrg5Uy1Jr3jnLOiC9ccQzI3sA47peW-kICGc0McKJrvGMUE65VJ5xAxp6La0VhK_Q3akbvPf7OYXx5_NeCUWYoPwbeNRZ9A</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Wang, X.</creator><creator>Gillibert, L.</creator><creator>Flin, F.</creator><creator>Coeurjolly, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</title><author>Wang, X. ; Gillibert, L. ; Flin, F. ; Coeurjolly, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-73bdc2ba0f9d0e295faa9dbf7c5d0a4d97094d4b8e20131356e239a7af75cc403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Euclidean distance</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Materials</topic><topic>Shape</topic><topic>Snow</topic><topic>Surface morphology</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, X.</creatorcontrib><creatorcontrib>Gillibert, L.</creatorcontrib><creatorcontrib>Flin, F.</creatorcontrib><creatorcontrib>Coeurjolly, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, X.</au><au>Gillibert, L.</au><au>Flin, F.</au><au>Coeurjolly, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>742</spage><epage>745</epage><pages>742-745</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>Many three-dimensional (3-D) image-based studies concerning granular and sintered materials require a description of the observed microstructures in terms of individual grains. We propose a robust segmentation algorithm which identify groove regions on the object's surface in order to locate possible grain boundaries in the object's volume. The algorithm relies on the volumetric propagation via Voronoi labeling of curvature information from the surface into the object 1 .</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.742-745
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6460241
source IEEE Xplore All Conference Series
subjects Euclidean distance
Image segmentation
Labeling
Materials
Shape
Snow
Surface morphology
title Curvature-driven volumetric segmentation of binary shapes: An application to snow microstructure analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Curvature-driven%20volumetric%20segmentation%20of%20binary%20shapes:%20An%20application%20to%20snow%20microstructure%20analysis&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Wang,%20X.&rft.date=2012-11&rft.spage=742&rft.epage=745&rft.pages=742-745&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&rft_dat=%3Cieee_CHZPO%3E6460241%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-73bdc2ba0f9d0e295faa9dbf7c5d0a4d97094d4b8e20131356e239a7af75cc403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460241&rfr_iscdi=true