Loading…
3D dynamic expression recognition based on a novel Deformation Vector Field and Random Forest
This paper proposes a new method for facial motion extraction to represent, learn and recognize observed expressions, from 4D video sequences. The approach called Deformation Vector Field (DVF) is based on Riemannian facial shape analysis and captures densely dynamic information from the entire face...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a new method for facial motion extraction to represent, learn and recognize observed expressions, from 4D video sequences. The approach called Deformation Vector Field (DVF) is based on Riemannian facial shape analysis and captures densely dynamic information from the entire face. The resulting temporal vector field is used to build the feature vector for expression recognition from 3D dynamic faces. By applying LDA-based feature space transformation for dimensionality reduction which is followed by a Multi-class Random Forest learning algorithm, the proposed approach achieved 93% average recognition rate on BU-4DFE database and outperforms state-of-art approaches. |
---|---|
ISSN: | 1051-4651 2831-7475 |