Loading…
Temporal feature selection for time-series prediction
We present a feature selection method for multivariate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combina...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3560 |
container_issue | |
container_start_page | 3557 |
container_title | |
container_volume | |
creator | Hido, S. Morimura, T. |
description | We present a feature selection method for multivariate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combinations of cumulative sum variables obtaining nonzero weights in sparse learning algorithms represent the optimal temporal effects from explanatory variables to the target variable. Experiments show that the method performs better than conventional methods in regression problems. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6460933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460933</ieee_id><sourcerecordid>6460933</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2fa6fc9c39c52bc228a74b83a56d7b3377a51c9a27d8c12b271bfb4af0ed991a3</originalsourceid><addsrcrecordid>eNotzMtKAzEUgOFoFRxrn8DNvEAg5-S-lOINCm7quiSZE0iZcYZkXPj2QnX1Lz74r9jOW6e8F0YpEP6adegkcKus3lwMlLESEYy6YR0IDVwZDXfsvrWzECikdh3TR5qWuYaxzxTW70p9o5HSWuavPs-1X8tEvFEt1Pql0lAu9MBucxgb7f67ZZ8vz8f9Gz98vL7vnw68gNUrxxxMTj5JnzTGhOiCVdHJoM1go5TWBg3JB7SDS4ARLcQcVciCBu8hyC17_PsWIjottUyh_pyMMsJLKX8B55FFnw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Temporal feature selection for time-series prediction</title><source>IEEE Xplore All Conference Series</source><creator>Hido, S. ; Morimura, T.</creator><creatorcontrib>Hido, S. ; Morimura, T.</creatorcontrib><description>We present a feature selection method for multivariate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combinations of cumulative sum variables obtaining nonzero weights in sparse learning algorithms represent the optimal temporal effects from explanatory variables to the target variable. Experiments show that the method performs better than conventional methods in regression problems.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Delay ; Hidden Markov models ; Input variables ; Pattern recognition ; Prediction algorithms ; Training</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3557-3560</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460933$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hido, S.</creatorcontrib><creatorcontrib>Morimura, T.</creatorcontrib><title>Temporal feature selection for time-series prediction</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>We present a feature selection method for multivariate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combinations of cumulative sum variables obtaining nonzero weights in sparse learning algorithms represent the optimal temporal effects from explanatory variables to the target variable. Experiments show that the method performs better than conventional methods in regression problems.</description><subject>Computational modeling</subject><subject>Delay</subject><subject>Hidden Markov models</subject><subject>Input variables</subject><subject>Pattern recognition</subject><subject>Prediction algorithms</subject><subject>Training</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzMtKAzEUgOFoFRxrn8DNvEAg5-S-lOINCm7quiSZE0iZcYZkXPj2QnX1Lz74r9jOW6e8F0YpEP6adegkcKus3lwMlLESEYy6YR0IDVwZDXfsvrWzECikdh3TR5qWuYaxzxTW70p9o5HSWuavPs-1X8tEvFEt1Pql0lAu9MBucxgb7f67ZZ8vz8f9Gz98vL7vnw68gNUrxxxMTj5JnzTGhOiCVdHJoM1go5TWBg3JB7SDS4ARLcQcVciCBu8hyC17_PsWIjottUyh_pyMMsJLKX8B55FFnw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Hido, S.</creator><creator>Morimura, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Temporal feature selection for time-series prediction</title><author>Hido, S. ; Morimura, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2fa6fc9c39c52bc228a74b83a56d7b3377a51c9a27d8c12b271bfb4af0ed991a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Delay</topic><topic>Hidden Markov models</topic><topic>Input variables</topic><topic>Pattern recognition</topic><topic>Prediction algorithms</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hido, S.</creatorcontrib><creatorcontrib>Morimura, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hido, S.</au><au>Morimura, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Temporal feature selection for time-series prediction</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>3557</spage><epage>3560</epage><pages>3557-3560</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>We present a feature selection method for multivariate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combinations of cumulative sum variables obtaining nonzero weights in sparse learning algorithms represent the optimal temporal effects from explanatory variables to the target variable. Experiments show that the method performs better than conventional methods in regression problems.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3557-3560 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_6460933 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Delay Hidden Markov models Input variables Pattern recognition Prediction algorithms Training |
title | Temporal feature selection for time-series prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Temporal%20feature%20selection%20for%20time-series%20prediction&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Hido,%20S.&rft.date=2012-11&rft.spage=3557&rft.epage=3560&rft.pages=3557-3560&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&rft_dat=%3Cieee_CHZPO%3E6460933%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2fa6fc9c39c52bc228a74b83a56d7b3377a51c9a27d8c12b271bfb4af0ed991a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460933&rfr_iscdi=true |