Loading…

Automated person segmentation in videos

This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhole, C., Pal, C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3675
container_issue
container_start_page 3672
container_title
container_volume
creator Bhole, C.
Pal, C.
description This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460961</ieee_id><sourcerecordid>6460961</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-971442ef9780fcd735763d4b6c9759044e45af877f88fc4fa319edd75d4eb943</originalsourceid><addsrcrecordid>eNotjc1KAzEURqNVcKx9AjezcxXITW5yk2Up_kHBTfclndyUiDNTJqPg21vU1cfhwPkuxCqQxxCUQwQVLkWjvQFJSHbx6wAdGa3B4ZVoQFmQ6CzciNta35XSyljfiIf15zz2cebUnniq49BWPvY8zHEuZyhD-1USj_VOXOf4UXn1v0uxe3rcbV7k9u35dbPeygJkZxkIEDXn873KXSJjyZmEB9cFskEhMtqYPVH2PneYo4HAKZFNyIeAZinu_7KFmfenqfRx-t47dCo4MD8AHT9i</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated person segmentation in videos</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhole, C. ; Pal, C.</creator><creatorcontrib>Bhole, C. ; Pal, C.</creatorcontrib><description>This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Humans ; Image color analysis ; Image segmentation ; Motion segmentation ; Optical imaging ; Videos</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3672-3675</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhole, C.</creatorcontrib><creatorcontrib>Pal, C.</creatorcontrib><title>Automated person segmentation in videos</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.</description><subject>Detectors</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Optical imaging</subject><subject>Videos</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjc1KAzEURqNVcKx9AjezcxXITW5yk2Up_kHBTfclndyUiDNTJqPg21vU1cfhwPkuxCqQxxCUQwQVLkWjvQFJSHbx6wAdGa3B4ZVoQFmQ6CzciNta35XSyljfiIf15zz2cebUnniq49BWPvY8zHEuZyhD-1USj_VOXOf4UXn1v0uxe3rcbV7k9u35dbPeygJkZxkIEDXn873KXSJjyZmEB9cFskEhMtqYPVH2PneYo4HAKZFNyIeAZinu_7KFmfenqfRx-t47dCo4MD8AHT9i</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Bhole, C.</creator><creator>Pal, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Automated person segmentation in videos</title><author>Bhole, C. ; Pal, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-971442ef9780fcd735763d4b6c9759044e45af877f88fc4fa319edd75d4eb943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Detectors</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Optical imaging</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhole, C.</creatorcontrib><creatorcontrib>Pal, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhole, C.</au><au>Pal, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated person segmentation in videos</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>3672</spage><epage>3675</epage><pages>3672-3675</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3672-3675
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_6460961
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Detectors
Humans
Image color analysis
Image segmentation
Motion segmentation
Optical imaging
Videos
title Automated person segmentation in videos
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20person%20segmentation%20in%20videos&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Bhole,%20C.&rft.date=2012-11&rft.spage=3672&rft.epage=3675&rft.pages=3672-3675&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&rft_dat=%3Cieee_6IE%3E6460961%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-971442ef9780fcd735763d4b6c9759044e45af877f88fc4fa319edd75d4eb943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460961&rfr_iscdi=true