Loading…
Automated person segmentation in videos
This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3675 |
container_issue | |
container_start_page | 3672 |
container_title | |
container_volume | |
creator | Bhole, C. Pal, C. |
description | This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6460961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6460961</ieee_id><sourcerecordid>6460961</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-971442ef9780fcd735763d4b6c9759044e45af877f88fc4fa319edd75d4eb943</originalsourceid><addsrcrecordid>eNotjc1KAzEURqNVcKx9AjezcxXITW5yk2Up_kHBTfclndyUiDNTJqPg21vU1cfhwPkuxCqQxxCUQwQVLkWjvQFJSHbx6wAdGa3B4ZVoQFmQ6CzciNta35XSyljfiIf15zz2cebUnniq49BWPvY8zHEuZyhD-1USj_VOXOf4UXn1v0uxe3rcbV7k9u35dbPeygJkZxkIEDXn873KXSJjyZmEB9cFskEhMtqYPVH2PneYo4HAKZFNyIeAZinu_7KFmfenqfRx-t47dCo4MD8AHT9i</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated person segmentation in videos</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhole, C. ; Pal, C.</creator><creatorcontrib>Bhole, C. ; Pal, C.</creatorcontrib><description>This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 9781467322164</identifier><identifier>ISBN: 1467322164</identifier><identifier>EISSN: 2831-7475</identifier><identifier>EISBN: 9784990644109</identifier><identifier>EISBN: 4990644107</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Humans ; Image color analysis ; Image segmentation ; Motion segmentation ; Optical imaging ; Videos</subject><ispartof>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3672-3675</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6460961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6460961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhole, C.</creatorcontrib><creatorcontrib>Pal, C.</creatorcontrib><title>Automated person segmentation in videos</title><title>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</title><addtitle>ICPR</addtitle><description>This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.</description><subject>Detectors</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Optical imaging</subject><subject>Videos</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>9781467322164</isbn><isbn>1467322164</isbn><isbn>9784990644109</isbn><isbn>4990644107</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjc1KAzEURqNVcKx9AjezcxXITW5yk2Up_kHBTfclndyUiDNTJqPg21vU1cfhwPkuxCqQxxCUQwQVLkWjvQFJSHbx6wAdGa3B4ZVoQFmQ6CzciNta35XSyljfiIf15zz2cebUnniq49BWPvY8zHEuZyhD-1USj_VOXOf4UXn1v0uxe3rcbV7k9u35dbPeygJkZxkIEDXn873KXSJjyZmEB9cFskEhMtqYPVH2PneYo4HAKZFNyIeAZinu_7KFmfenqfRx-t47dCo4MD8AHT9i</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Bhole, C.</creator><creator>Pal, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Automated person segmentation in videos</title><author>Bhole, C. ; Pal, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-971442ef9780fcd735763d4b6c9759044e45af877f88fc4fa319edd75d4eb943</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Detectors</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Optical imaging</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhole, C.</creatorcontrib><creatorcontrib>Pal, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhole, C.</au><au>Pal, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated person segmentation in videos</atitle><btitle>Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)</btitle><stitle>ICPR</stitle><date>2012-11</date><risdate>2012</risdate><spage>3672</spage><epage>3675</epage><pages>3672-3675</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>9781467322164</isbn><isbn>1467322164</isbn><eisbn>9784990644109</eisbn><eisbn>4990644107</eisbn><abstract>This paper deals with automatically segmenting a person from challenging videos using a pose detector. A state of the art pose detector is used to detect the pose of a person from a frame in the video sequence. The pose is used to extract color and optical flow features to train a conditional random field to provide segmentation on multiple frames. Location from the pose is used to refine the results. No additional training data is required by the method. We also show how the pose results can be improved by our model.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012, p.3672-3675 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_6460961 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Detectors Humans Image color analysis Image segmentation Motion segmentation Optical imaging Videos |
title | Automated person segmentation in videos |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20person%20segmentation%20in%20videos&rft.btitle=Proceedings%20of%20the%2021st%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR2012)&rft.au=Bhole,%20C.&rft.date=2012-11&rft.spage=3672&rft.epage=3675&rft.pages=3672-3675&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=9781467322164&rft.isbn_list=1467322164&rft_id=info:doi/&rft.eisbn=9784990644109&rft.eisbn_list=4990644107&rft_dat=%3Cieee_6IE%3E6460961%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-971442ef9780fcd735763d4b6c9759044e45af877f88fc4fa319edd75d4eb943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6460961&rfr_iscdi=true |