Loading…
Nonlocal and multivariate mathematical morphology
The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct a vectorial ordering, nonlocal configurations based on color patches can be easily handled and provide much better results than with classical local morphological approaches. |
---|---|
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2012.6466812 |