Loading…

Nonlocal and multivariate mathematical morphology

The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering...

Full description

Saved in:
Bibliographic Details
Main Authors: Lezoray, O., Elmoataz, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 132
container_issue
container_start_page 129
container_title
container_volume
creator Lezoray, O.
Elmoataz, A.
description The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct a vectorial ordering, nonlocal configurations based on color patches can be easily handled and provide much better results than with classical local morphological approaches.
doi_str_mv 10.1109/ICIP.2012.6466812
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6466812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6466812</ieee_id><sourcerecordid>6466812</sourcerecordid><originalsourceid>FETCH-LOGICAL-h252t-798baade8692720e7776de478af25d53510ab2dd01440b17119b0bcc5d2986453</originalsourceid><addsrcrecordid>eNo1j8tKw1AURY8vMK39AHHSH0g859z3UIKPQFEHOi43ubcmkjQliUL_3op1stdgwYINcE2YEaG7LfLiNWMkzrTU2hKfwMIZS1IbwUoIPoWEhaXUKunOYPYvJJ1DQoo5ldbiJczG8RPxEBKUAD3327avfLv027Dsvtqp-fZD46e47PxUx8M0v7brh13dt_3H_gouNr4d4-LIObw_3L_lT-nq5bHI71ZpzYqn1Dhbeh-i1Y4NYzTG6BClsX7DKiihCH3JISBJiSUZIldiWVUqsLNaKjGHm79uE2Nc74am88N-fbwufgBkDEfl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlocal and multivariate mathematical morphology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lezoray, O. ; Elmoataz, A.</creator><creatorcontrib>Lezoray, O. ; Elmoataz, A.</creatorcontrib><description>The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct a vectorial ordering, nonlocal configurations based on color patches can be easily handled and provide much better results than with classical local morphological approaches.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1467325341</identifier><identifier>ISBN: 9781467325349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467325332</identifier><identifier>EISBN: 1467325325</identifier><identifier>EISBN: 9781467325325</identifier><identifier>EISBN: 1467325333</identifier><identifier>DOI: 10.1109/ICIP.2012.6466812</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Image color analysis ; Laplace equations ; Lattices ; manifold learning ; Manifolds ; Mathematical morphology ; Morphology ; multivariate ; nonlocal ; Vectors</subject><ispartof>2012 19th IEEE International Conference on Image Processing, 2012, p.129-132</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6466812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6466812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lezoray, O.</creatorcontrib><creatorcontrib>Elmoataz, A.</creatorcontrib><title>Nonlocal and multivariate mathematical morphology</title><title>2012 19th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct a vectorial ordering, nonlocal configurations based on color patches can be easily handled and provide much better results than with classical local morphological approaches.</description><subject>Dictionaries</subject><subject>Image color analysis</subject><subject>Laplace equations</subject><subject>Lattices</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Mathematical morphology</subject><subject>Morphology</subject><subject>multivariate</subject><subject>nonlocal</subject><subject>Vectors</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1467325341</isbn><isbn>9781467325349</isbn><isbn>9781467325332</isbn><isbn>1467325325</isbn><isbn>9781467325325</isbn><isbn>1467325333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKw1AURY8vMK39AHHSH0g859z3UIKPQFEHOi43ubcmkjQliUL_3op1stdgwYINcE2YEaG7LfLiNWMkzrTU2hKfwMIZS1IbwUoIPoWEhaXUKunOYPYvJJ1DQoo5ldbiJczG8RPxEBKUAD3327avfLv027Dsvtqp-fZD46e47PxUx8M0v7brh13dt_3H_gouNr4d4-LIObw_3L_lT-nq5bHI71ZpzYqn1Dhbeh-i1Y4NYzTG6BClsX7DKiihCH3JISBJiSUZIldiWVUqsLNaKjGHm79uE2Nc74am88N-fbwufgBkDEfl</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Lezoray, O.</creator><creator>Elmoataz, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Nonlocal and multivariate mathematical morphology</title><author>Lezoray, O. ; Elmoataz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h252t-798baade8692720e7776de478af25d53510ab2dd01440b17119b0bcc5d2986453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dictionaries</topic><topic>Image color analysis</topic><topic>Laplace equations</topic><topic>Lattices</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Mathematical morphology</topic><topic>Morphology</topic><topic>multivariate</topic><topic>nonlocal</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Lezoray, O.</creatorcontrib><creatorcontrib>Elmoataz, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lezoray, O.</au><au>Elmoataz, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlocal and multivariate mathematical morphology</atitle><btitle>2012 19th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2012-09</date><risdate>2012</risdate><spage>129</spage><epage>132</epage><pages>129-132</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1467325341</isbn><isbn>9781467325349</isbn><eisbn>9781467325332</eisbn><eisbn>1467325325</eisbn><eisbn>9781467325325</eisbn><eisbn>1467325333</eisbn><abstract>The generalization of mathematical morphology to multivariate images is addressed in this paper. The proposed approach is fully unsupervised and consists in constructing a complete lattice from an image as a rank transformation together with a learned ordering of vectors. This unsupervised ordering of vectors relies on three steps: dictionary learning, manifold learning and out of sample extension. In addition to providing an efficient way to construct a vectorial ordering, nonlocal configurations based on color patches can be easily handled and provide much better results than with classical local morphological approaches.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2012.6466812</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2012 19th IEEE International Conference on Image Processing, 2012, p.129-132
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6466812
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dictionaries
Image color analysis
Laplace equations
Lattices
manifold learning
Manifolds
Mathematical morphology
Morphology
multivariate
nonlocal
Vectors
title Nonlocal and multivariate mathematical morphology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlocal%20and%20multivariate%20mathematical%20morphology&rft.btitle=2012%2019th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Lezoray,%20O.&rft.date=2012-09&rft.spage=129&rft.epage=132&rft.pages=129-132&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1467325341&rft.isbn_list=9781467325349&rft_id=info:doi/10.1109/ICIP.2012.6466812&rft.eisbn=9781467325332&rft.eisbn_list=1467325325&rft.eisbn_list=9781467325325&rft.eisbn_list=1467325333&rft_dat=%3Cieee_6IE%3E6466812%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h252t-798baade8692720e7776de478af25d53510ab2dd01440b17119b0bcc5d2986453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6466812&rfr_iscdi=true