Loading…

Supervised multispectral image segmentation with power watersheds

In recent years, graph-based methods have had a significant impact on image segmentation. They are especially noteworthy for supervised segmentation, where the user provides task-specific foreground and background seeds. We adapt the power watershed framework to multispectral and hyperspectral image...

Full description

Saved in:
Bibliographic Details
Main Authors: Jordan, J., Angelopoulou, E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1588
container_issue
container_start_page 1585
container_title
container_volume
creator Jordan, J.
Angelopoulou, E.
description In recent years, graph-based methods have had a significant impact on image segmentation. They are especially noteworthy for supervised segmentation, where the user provides task-specific foreground and background seeds. We adapt the power watershed framework to multispectral and hyperspectral image data and incorporate similarity measures from the field of spectral matching. We also propose a new data-driven graph edge weighting. Our weights are computed by the topological information of a self-organizing map. We show that graph weights based on a simple Lp-norm, as used in other modalities, do not give satisfactory segmentation results for multispectral data, while similarity measures that were specifically designed for this domain perform better. Our new approach is competitive and has an advantage in some of the tested scenarios.
doi_str_mv 10.1109/ICIP.2012.6467177
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6467177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6467177</ieee_id><sourcerecordid>6467177</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-149f0aeb7c43095fbeee34a8d4ddae77af594fb876994656d9408d99e12d2bb03</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhNcTmNY-gHiTF0jcfw_Z3csSrAYKCup12XT_tCtJG7Jbg29vwHo1DMN8DEPIPdAcgJrHqqzeckaB5YUoFCh1QRZGaZgMZ5JzdkkSxjVkWgpzRWb_gYBrkoBkLBNa01syC-GL0gnEISHL91OPw7cP6NLu1EYfetzGwbap7-wO04C7Dg_RRn88pKOP-7Q_jjiko404hD26cEduGtsGXJx1Tj5XTx_lS7Z-fa7K5TrzoGTMQJiGWqzVVnBqZFMjIhdWO-GcRaVsI41oaq0KY0QhC2cE1c4YBOZYXVM-Jw9_XD81N_0w7Rt-Nucr-C-g6E-C</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Supervised multispectral image segmentation with power watersheds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jordan, J. ; Angelopoulou, E.</creator><creatorcontrib>Jordan, J. ; Angelopoulou, E.</creatorcontrib><description>In recent years, graph-based methods have had a significant impact on image segmentation. They are especially noteworthy for supervised segmentation, where the user provides task-specific foreground and background seeds. We adapt the power watershed framework to multispectral and hyperspectral image data and incorporate similarity measures from the field of spectral matching. We also propose a new data-driven graph edge weighting. Our weights are computed by the topological information of a self-organizing map. We show that graph weights based on a simple Lp-norm, as used in other modalities, do not give satisfactory segmentation results for multispectral data, while similarity measures that were specifically designed for this domain perform better. Our new approach is competitive and has an advantage in some of the tested scenarios.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1467325341</identifier><identifier>ISBN: 9781467325349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467325332</identifier><identifier>EISBN: 1467325325</identifier><identifier>EISBN: 9781467325325</identifier><identifier>EISBN: 1467325333</identifier><identifier>DOI: 10.1109/ICIP.2012.6467177</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Distance Learning ; Distance measurement ; Hyperspectral imaging ; Image edge detection ; Image segmentation ; Lattices ; Multispectral imaging ; Self organizing feature maps ; Vectors</subject><ispartof>2012 19th IEEE International Conference on Image Processing, 2012, p.1585-1588</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6467177$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6467177$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jordan, J.</creatorcontrib><creatorcontrib>Angelopoulou, E.</creatorcontrib><title>Supervised multispectral image segmentation with power watersheds</title><title>2012 19th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>In recent years, graph-based methods have had a significant impact on image segmentation. They are especially noteworthy for supervised segmentation, where the user provides task-specific foreground and background seeds. We adapt the power watershed framework to multispectral and hyperspectral image data and incorporate similarity measures from the field of spectral matching. We also propose a new data-driven graph edge weighting. Our weights are computed by the topological information of a self-organizing map. We show that graph weights based on a simple Lp-norm, as used in other modalities, do not give satisfactory segmentation results for multispectral data, while similarity measures that were specifically designed for this domain perform better. Our new approach is competitive and has an advantage in some of the tested scenarios.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Distance Learning</subject><subject>Distance measurement</subject><subject>Hyperspectral imaging</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Lattices</subject><subject>Multispectral imaging</subject><subject>Self organizing feature maps</subject><subject>Vectors</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1467325341</isbn><isbn>9781467325349</isbn><isbn>9781467325332</isbn><isbn>1467325325</isbn><isbn>9781467325325</isbn><isbn>1467325333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKw0AYhNcTmNY-gHiTF0jcfw_Z3csSrAYKCup12XT_tCtJG7Jbg29vwHo1DMN8DEPIPdAcgJrHqqzeckaB5YUoFCh1QRZGaZgMZ5JzdkkSxjVkWgpzRWb_gYBrkoBkLBNa01syC-GL0gnEISHL91OPw7cP6NLu1EYfetzGwbap7-wO04C7Dg_RRn88pKOP-7Q_jjiko404hD26cEduGtsGXJx1Tj5XTx_lS7Z-fa7K5TrzoGTMQJiGWqzVVnBqZFMjIhdWO-GcRaVsI41oaq0KY0QhC2cE1c4YBOZYXVM-Jw9_XD81N_0w7Rt-Nucr-C-g6E-C</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Jordan, J.</creator><creator>Angelopoulou, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201209</creationdate><title>Supervised multispectral image segmentation with power watersheds</title><author>Jordan, J. ; Angelopoulou, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-149f0aeb7c43095fbeee34a8d4ddae77af594fb876994656d9408d99e12d2bb03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Distance Learning</topic><topic>Distance measurement</topic><topic>Hyperspectral imaging</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Lattices</topic><topic>Multispectral imaging</topic><topic>Self organizing feature maps</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jordan, J.</creatorcontrib><creatorcontrib>Angelopoulou, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jordan, J.</au><au>Angelopoulou, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Supervised multispectral image segmentation with power watersheds</atitle><btitle>2012 19th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2012-09</date><risdate>2012</risdate><spage>1585</spage><epage>1588</epage><pages>1585-1588</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1467325341</isbn><isbn>9781467325349</isbn><eisbn>9781467325332</eisbn><eisbn>1467325325</eisbn><eisbn>9781467325325</eisbn><eisbn>1467325333</eisbn><abstract>In recent years, graph-based methods have had a significant impact on image segmentation. They are especially noteworthy for supervised segmentation, where the user provides task-specific foreground and background seeds. We adapt the power watershed framework to multispectral and hyperspectral image data and incorporate similarity measures from the field of spectral matching. We also propose a new data-driven graph edge weighting. Our weights are computed by the topological information of a self-organizing map. We show that graph weights based on a simple Lp-norm, as used in other modalities, do not give satisfactory segmentation results for multispectral data, while similarity measures that were specifically designed for this domain perform better. Our new approach is competitive and has an advantage in some of the tested scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2012.6467177</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2012 19th IEEE International Conference on Image Processing, 2012, p.1585-1588
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6467177
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Distance Learning
Distance measurement
Hyperspectral imaging
Image edge detection
Image segmentation
Lattices
Multispectral imaging
Self organizing feature maps
Vectors
title Supervised multispectral image segmentation with power watersheds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Supervised%20multispectral%20image%20segmentation%20with%20power%20watersheds&rft.btitle=2012%2019th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Jordan,%20J.&rft.date=2012-09&rft.spage=1585&rft.epage=1588&rft.pages=1585-1588&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1467325341&rft.isbn_list=9781467325349&rft_id=info:doi/10.1109/ICIP.2012.6467177&rft.eisbn=9781467325332&rft.eisbn_list=1467325325&rft.eisbn_list=9781467325325&rft.eisbn_list=1467325333&rft_dat=%3Cieee_6IE%3E6467177%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-149f0aeb7c43095fbeee34a8d4ddae77af594fb876994656d9408d99e12d2bb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6467177&rfr_iscdi=true