Loading…

Learning sparse tag patterns for social image classification

User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxili...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Lin, Ling-Yu Duan, Junsong Yuan, Qingyong Li, Siwei Luo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2884
container_issue
container_start_page 2881
container_title
container_volume
creator Jie Lin
Ling-Yu Duan
Junsong Yuan
Qingyong Li
Siwei Luo
description User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.
doi_str_mv 10.1109/ICIP.2012.6467501
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6467501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6467501</ieee_id><sourcerecordid>6467501</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-efb80f8f732a48f789e033977bea8b79b668cae21a1ed06f5d0fd4701487bddd3</originalsourceid><addsrcrecordid>eNo1kM1KxDAUheMf2BnnAcRNXqA1N0mbBNxI8adQ0IWuh9v2pkRqW5pufHsLjqvD4cDHx2HsFkQGINx9VVbvmRQgs0IXJhdwxg7OWNiKkrlS8pwlUllIba7dBdv9DxouWQK5lKm2VlyzXYxfQmwgBQl7qAmXMYw9jzMukfiKPZ9xXWkZI_fTwuPUBhx4-MaeeDtgjMGHFtcwjTfsyuMQ6XDKPft8fvooX9P67aUqH-s0SLBrSr6xwlu_2aDewjoSSjljGkLbGNcUhW2RJCBQJwqfd8J32gjQ1jRd16k9u_vjBiI6zsvmsvwcTy-oXyQKTMc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning sparse tag patterns for social image classification</title><source>IEEE Xplore All Conference Series</source><creator>Jie Lin ; Ling-Yu Duan ; Junsong Yuan ; Qingyong Li ; Siwei Luo</creator><creatorcontrib>Jie Lin ; Ling-Yu Duan ; Junsong Yuan ; Qingyong Li ; Siwei Luo</creatorcontrib><description>User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1467325341</identifier><identifier>ISBN: 9781467325349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467325332</identifier><identifier>EISBN: 1467325325</identifier><identifier>EISBN: 9781467325325</identifier><identifier>EISBN: 1467325333</identifier><identifier>DOI: 10.1109/ICIP.2012.6467501</identifier><language>eng</language><publisher>IEEE</publisher><subject>CBIR ; Educational institutions ; Feature extraction ; Image Classification ; Noise measurement ; Optimization ; Semantics ; Social Data ; Sparse Tag Patterns ; Training ; Visualization</subject><ispartof>2012 19th IEEE International Conference on Image Processing, 2012, p.2881-2884</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6467501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6467501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Lin</creatorcontrib><creatorcontrib>Ling-Yu Duan</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Qingyong Li</creatorcontrib><creatorcontrib>Siwei Luo</creatorcontrib><title>Learning sparse tag patterns for social image classification</title><title>2012 19th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.</description><subject>CBIR</subject><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Image Classification</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Social Data</subject><subject>Sparse Tag Patterns</subject><subject>Training</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1467325341</isbn><isbn>9781467325349</isbn><isbn>9781467325332</isbn><isbn>1467325325</isbn><isbn>9781467325325</isbn><isbn>1467325333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1KxDAUheMf2BnnAcRNXqA1N0mbBNxI8adQ0IWuh9v2pkRqW5pufHsLjqvD4cDHx2HsFkQGINx9VVbvmRQgs0IXJhdwxg7OWNiKkrlS8pwlUllIba7dBdv9DxouWQK5lKm2VlyzXYxfQmwgBQl7qAmXMYw9jzMukfiKPZ9xXWkZI_fTwuPUBhx4-MaeeDtgjMGHFtcwjTfsyuMQ6XDKPft8fvooX9P67aUqH-s0SLBrSr6xwlu_2aDewjoSSjljGkLbGNcUhW2RJCBQJwqfd8J32gjQ1jRd16k9u_vjBiI6zsvmsvwcTy-oXyQKTMc</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Jie Lin</creator><creator>Ling-Yu Duan</creator><creator>Junsong Yuan</creator><creator>Qingyong Li</creator><creator>Siwei Luo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Learning sparse tag patterns for social image classification</title><author>Jie Lin ; Ling-Yu Duan ; Junsong Yuan ; Qingyong Li ; Siwei Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-efb80f8f732a48f789e033977bea8b79b668cae21a1ed06f5d0fd4701487bddd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CBIR</topic><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Image Classification</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Social Data</topic><topic>Sparse Tag Patterns</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Lin</creatorcontrib><creatorcontrib>Ling-Yu Duan</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Qingyong Li</creatorcontrib><creatorcontrib>Siwei Luo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Lin</au><au>Ling-Yu Duan</au><au>Junsong Yuan</au><au>Qingyong Li</au><au>Siwei Luo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning sparse tag patterns for social image classification</atitle><btitle>2012 19th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2881</spage><epage>2884</epage><pages>2881-2884</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1467325341</isbn><isbn>9781467325349</isbn><eisbn>9781467325332</eisbn><eisbn>1467325325</eisbn><eisbn>9781467325325</eisbn><eisbn>1467325333</eisbn><abstract>User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2012.6467501</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2012 19th IEEE International Conference on Image Processing, 2012, p.2881-2884
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_6467501
source IEEE Xplore All Conference Series
subjects CBIR
Educational institutions
Feature extraction
Image Classification
Noise measurement
Optimization
Semantics
Social Data
Sparse Tag Patterns
Training
Visualization
title Learning sparse tag patterns for social image classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20sparse%20tag%20patterns%20for%20social%20image%20classification&rft.btitle=2012%2019th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Jie%20Lin&rft.date=2012-01-01&rft.spage=2881&rft.epage=2884&rft.pages=2881-2884&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1467325341&rft.isbn_list=9781467325349&rft_id=info:doi/10.1109/ICIP.2012.6467501&rft.eisbn=9781467325332&rft.eisbn_list=1467325325&rft.eisbn_list=9781467325325&rft.eisbn_list=1467325333&rft_dat=%3Cieee_CHZPO%3E6467501%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-efb80f8f732a48f789e033977bea8b79b668cae21a1ed06f5d0fd4701487bddd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6467501&rfr_iscdi=true