Loading…
Learning sparse tag patterns for social image classification
User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxili...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2884 |
container_issue | |
container_start_page | 2881 |
container_title | |
container_volume | |
creator | Jie Lin Ling-Yu Duan Junsong Yuan Qingyong Li Siwei Luo |
description | User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art. |
doi_str_mv | 10.1109/ICIP.2012.6467501 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6467501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6467501</ieee_id><sourcerecordid>6467501</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-efb80f8f732a48f789e033977bea8b79b668cae21a1ed06f5d0fd4701487bddd3</originalsourceid><addsrcrecordid>eNo1kM1KxDAUheMf2BnnAcRNXqA1N0mbBNxI8adQ0IWuh9v2pkRqW5pufHsLjqvD4cDHx2HsFkQGINx9VVbvmRQgs0IXJhdwxg7OWNiKkrlS8pwlUllIba7dBdv9DxouWQK5lKm2VlyzXYxfQmwgBQl7qAmXMYw9jzMukfiKPZ9xXWkZI_fTwuPUBhx4-MaeeDtgjMGHFtcwjTfsyuMQ6XDKPft8fvooX9P67aUqH-s0SLBrSr6xwlu_2aDewjoSSjljGkLbGNcUhW2RJCBQJwqfd8J32gjQ1jRd16k9u_vjBiI6zsvmsvwcTy-oXyQKTMc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning sparse tag patterns for social image classification</title><source>IEEE Xplore All Conference Series</source><creator>Jie Lin ; Ling-Yu Duan ; Junsong Yuan ; Qingyong Li ; Siwei Luo</creator><creatorcontrib>Jie Lin ; Ling-Yu Duan ; Junsong Yuan ; Qingyong Li ; Siwei Luo</creatorcontrib><description>User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 1467325341</identifier><identifier>ISBN: 9781467325349</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781467325332</identifier><identifier>EISBN: 1467325325</identifier><identifier>EISBN: 9781467325325</identifier><identifier>EISBN: 1467325333</identifier><identifier>DOI: 10.1109/ICIP.2012.6467501</identifier><language>eng</language><publisher>IEEE</publisher><subject>CBIR ; Educational institutions ; Feature extraction ; Image Classification ; Noise measurement ; Optimization ; Semantics ; Social Data ; Sparse Tag Patterns ; Training ; Visualization</subject><ispartof>2012 19th IEEE International Conference on Image Processing, 2012, p.2881-2884</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6467501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6467501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jie Lin</creatorcontrib><creatorcontrib>Ling-Yu Duan</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Qingyong Li</creatorcontrib><creatorcontrib>Siwei Luo</creatorcontrib><title>Learning sparse tag patterns for social image classification</title><title>2012 19th IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.</description><subject>CBIR</subject><subject>Educational institutions</subject><subject>Feature extraction</subject><subject>Image Classification</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Social Data</subject><subject>Sparse Tag Patterns</subject><subject>Training</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>1467325341</isbn><isbn>9781467325349</isbn><isbn>9781467325332</isbn><isbn>1467325325</isbn><isbn>9781467325325</isbn><isbn>1467325333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1KxDAUheMf2BnnAcRNXqA1N0mbBNxI8adQ0IWuh9v2pkRqW5pufHsLjqvD4cDHx2HsFkQGINx9VVbvmRQgs0IXJhdwxg7OWNiKkrlS8pwlUllIba7dBdv9DxouWQK5lKm2VlyzXYxfQmwgBQl7qAmXMYw9jzMukfiKPZ9xXWkZI_fTwuPUBhx4-MaeeDtgjMGHFtcwjTfsyuMQ6XDKPft8fvooX9P67aUqH-s0SLBrSr6xwlu_2aDewjoSSjljGkLbGNcUhW2RJCBQJwqfd8J32gjQ1jRd16k9u_vjBiI6zsvmsvwcTy-oXyQKTMc</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Jie Lin</creator><creator>Ling-Yu Duan</creator><creator>Junsong Yuan</creator><creator>Qingyong Li</creator><creator>Siwei Luo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Learning sparse tag patterns for social image classification</title><author>Jie Lin ; Ling-Yu Duan ; Junsong Yuan ; Qingyong Li ; Siwei Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-efb80f8f732a48f789e033977bea8b79b668cae21a1ed06f5d0fd4701487bddd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CBIR</topic><topic>Educational institutions</topic><topic>Feature extraction</topic><topic>Image Classification</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Social Data</topic><topic>Sparse Tag Patterns</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jie Lin</creatorcontrib><creatorcontrib>Ling-Yu Duan</creatorcontrib><creatorcontrib>Junsong Yuan</creatorcontrib><creatorcontrib>Qingyong Li</creatorcontrib><creatorcontrib>Siwei Luo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jie Lin</au><au>Ling-Yu Duan</au><au>Junsong Yuan</au><au>Qingyong Li</au><au>Siwei Luo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning sparse tag patterns for social image classification</atitle><btitle>2012 19th IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2881</spage><epage>2884</epage><pages>2881-2884</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>1467325341</isbn><isbn>9781467325349</isbn><eisbn>9781467325332</eisbn><eisbn>1467325325</eisbn><eisbn>9781467325325</eisbn><eisbn>1467325333</eisbn><abstract>User-generated tags associated with images from social media (e.g., Flickr) provide valuable textual resources for image classification. However, the noisy and huge tag vocabulary heavily degrades the effectiveness and efficiency of state-of-the-art image classification methods that exploited auxiliary web data. To alleviate the problem, we introduce a Sparse Tag Patterns (STP) model to discover sparsity constrained co-occurrence tag patterns from large scale user contributed tags among social data. To fulfill the compactness and discriminability, we formulate STP as a problem of minimizing a quadratic loss function regularized by the bi-layer l 1 norm. We treat the learned STP as alternative intermediate semantic image feature and verify its superiority within a search-based image classification framework. Experiments on 240K social images associated with millions of tags have demonstrated encouraging performance of the proposed method compared to the state-of-the-art.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2012.6467501</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2012 19th IEEE International Conference on Image Processing, 2012, p.2881-2884 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_6467501 |
source | IEEE Xplore All Conference Series |
subjects | CBIR Educational institutions Feature extraction Image Classification Noise measurement Optimization Semantics Social Data Sparse Tag Patterns Training Visualization |
title | Learning sparse tag patterns for social image classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20sparse%20tag%20patterns%20for%20social%20image%20classification&rft.btitle=2012%2019th%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Jie%20Lin&rft.date=2012-01-01&rft.spage=2881&rft.epage=2884&rft.pages=2881-2884&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=1467325341&rft.isbn_list=9781467325349&rft_id=info:doi/10.1109/ICIP.2012.6467501&rft.eisbn=9781467325332&rft.eisbn_list=1467325325&rft.eisbn_list=9781467325325&rft.eisbn_list=1467325333&rft_dat=%3Cieee_CHZPO%3E6467501%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-efb80f8f732a48f789e033977bea8b79b668cae21a1ed06f5d0fd4701487bddd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6467501&rfr_iscdi=true |