Loading…
Indoor human tracking application using multiple depth-cameras
This research developed an application that could tracks and locates human's presence and position in indoor environment using multiple depth-cameras. Kinect as the most affordable device that equipped with depth-camera was used in this work. The application obtains stream data from Kinect and...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 312 |
container_issue | |
container_start_page | 307 |
container_title | |
container_volume | |
creator | Saputra, M. R. U. Widyawan, W. Putra, G. D. Santosa, P. I. |
description | This research developed an application that could tracks and locates human's presence and position in indoor environment using multiple depth-cameras. Kinect as the most affordable device that equipped with depth-camera was used in this work. The application obtains stream data from Kinect and analyzes presence of human using skeletal tracking library on Kinect for Windows SDK v1. The final application also visualizes human location on 3D environment using Windows Presentation Foundation (WPF) 4.0. In order to visualize 3D object correctly, the application also took into account the coverage that may intersect when two Kinects were placed in adjacent position so that the final human location is combined. In the end, application was tested in 3 different scenarios and it's found that the average error in determining human location was 0.13589 meters. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6468750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6468750</ieee_id><sourcerecordid>6468750</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-c340f52e0825250e3c087b73300f3a416b862685bd282a892b130dd1eaec66093</originalsourceid><addsrcrecordid>eNotjstKAzEUQAMiqLVf0E1-YODmdSfdCFJ8FArd6LrcSe600XmRySz8eym6OnAWh3MjHpTF2hjQaO_Eep6_AEApQIV4L572QxzHLC9LT4MsmcJ3Gs6SpqlLgUoaB7nMV9MvXUlTxzLyVC5VoJ4zzY_itqVu5vU_V-Lz9eVj914djm_73fOhSgpcqYKx0DrN4LXTDtgE8HVznYLWkFXYeNToXRO11-S3ulEGYlRMHBBha1Zi89dNzHyacuop_5zQoq8dmF8mAUD0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indoor human tracking application using multiple depth-cameras</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saputra, M. R. U. ; Widyawan, W. ; Putra, G. D. ; Santosa, P. I.</creator><creatorcontrib>Saputra, M. R. U. ; Widyawan, W. ; Putra, G. D. ; Santosa, P. I.</creatorcontrib><description>This research developed an application that could tracks and locates human's presence and position in indoor environment using multiple depth-cameras. Kinect as the most affordable device that equipped with depth-camera was used in this work. The application obtains stream data from Kinect and analyzes presence of human using skeletal tracking library on Kinect for Windows SDK v1. The final application also visualizes human location on 3D environment using Windows Presentation Foundation (WPF) 4.0. In order to visualize 3D object correctly, the application also took into account the coverage that may intersect when two Kinects were placed in adjacent position so that the final human location is combined. In the end, application was tested in 3 different scenarios and it's found that the average error in determining human location was 0.13589 meters.</description><identifier>ISBN: 1467330264</identifier><identifier>ISBN: 9781467330268</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Data visualization ; Hardware ; Humans ; Indoor environments ; Servers ; Skeleton</subject><ispartof>2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2012, p.307-312</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6468750$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6468750$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saputra, M. R. U.</creatorcontrib><creatorcontrib>Widyawan, W.</creatorcontrib><creatorcontrib>Putra, G. D.</creatorcontrib><creatorcontrib>Santosa, P. I.</creatorcontrib><title>Indoor human tracking application using multiple depth-cameras</title><title>2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS)</title><addtitle>ICACSIS</addtitle><description>This research developed an application that could tracks and locates human's presence and position in indoor environment using multiple depth-cameras. Kinect as the most affordable device that equipped with depth-camera was used in this work. The application obtains stream data from Kinect and analyzes presence of human using skeletal tracking library on Kinect for Windows SDK v1. The final application also visualizes human location on 3D environment using Windows Presentation Foundation (WPF) 4.0. In order to visualize 3D object correctly, the application also took into account the coverage that may intersect when two Kinects were placed in adjacent position so that the final human location is combined. In the end, application was tested in 3 different scenarios and it's found that the average error in determining human location was 0.13589 meters.</description><subject>Cameras</subject><subject>Data visualization</subject><subject>Hardware</subject><subject>Humans</subject><subject>Indoor environments</subject><subject>Servers</subject><subject>Skeleton</subject><isbn>1467330264</isbn><isbn>9781467330268</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKAzEUQAMiqLVf0E1-YODmdSfdCFJ8FArd6LrcSe600XmRySz8eym6OnAWh3MjHpTF2hjQaO_Eep6_AEApQIV4L572QxzHLC9LT4MsmcJ3Gs6SpqlLgUoaB7nMV9MvXUlTxzLyVC5VoJ4zzY_itqVu5vU_V-Lz9eVj914djm_73fOhSgpcqYKx0DrN4LXTDtgE8HVznYLWkFXYeNToXRO11-S3ulEGYlRMHBBha1Zi89dNzHyacuop_5zQoq8dmF8mAUD0</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Saputra, M. R. U.</creator><creator>Widyawan, W.</creator><creator>Putra, G. D.</creator><creator>Santosa, P. I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Indoor human tracking application using multiple depth-cameras</title><author>Saputra, M. R. U. ; Widyawan, W. ; Putra, G. D. ; Santosa, P. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-c340f52e0825250e3c087b73300f3a416b862685bd282a892b130dd1eaec66093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cameras</topic><topic>Data visualization</topic><topic>Hardware</topic><topic>Humans</topic><topic>Indoor environments</topic><topic>Servers</topic><topic>Skeleton</topic><toplevel>online_resources</toplevel><creatorcontrib>Saputra, M. R. U.</creatorcontrib><creatorcontrib>Widyawan, W.</creatorcontrib><creatorcontrib>Putra, G. D.</creatorcontrib><creatorcontrib>Santosa, P. I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saputra, M. R. U.</au><au>Widyawan, W.</au><au>Putra, G. D.</au><au>Santosa, P. I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indoor human tracking application using multiple depth-cameras</atitle><btitle>2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS)</btitle><stitle>ICACSIS</stitle><date>2012-12</date><risdate>2012</risdate><spage>307</spage><epage>312</epage><pages>307-312</pages><isbn>1467330264</isbn><isbn>9781467330268</isbn><abstract>This research developed an application that could tracks and locates human's presence and position in indoor environment using multiple depth-cameras. Kinect as the most affordable device that equipped with depth-camera was used in this work. The application obtains stream data from Kinect and analyzes presence of human using skeletal tracking library on Kinect for Windows SDK v1. The final application also visualizes human location on 3D environment using Windows Presentation Foundation (WPF) 4.0. In order to visualize 3D object correctly, the application also took into account the coverage that may intersect when two Kinects were placed in adjacent position so that the final human location is combined. In the end, application was tested in 3 different scenarios and it's found that the average error in determining human location was 0.13589 meters.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467330264 |
ispartof | 2012 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2012, p.307-312 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6468750 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Data visualization Hardware Humans Indoor environments Servers Skeleton |
title | Indoor human tracking application using multiple depth-cameras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indoor%20human%20tracking%20application%20using%20multiple%20depth-cameras&rft.btitle=2012%20International%20Conference%20on%20Advanced%20Computer%20Science%20and%20Information%20Systems%20(ICACSIS)&rft.au=Saputra,%20M.%20R.%20U.&rft.date=2012-12&rft.spage=307&rft.epage=312&rft.pages=307-312&rft.isbn=1467330264&rft.isbn_list=9781467330268&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6468750%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-c340f52e0825250e3c087b73300f3a416b862685bd282a892b130dd1eaec66093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6468750&rfr_iscdi=true |