Loading…

Physical modeling of voltage-driven resistive switching in oxide RRAM

Resistive switching random access memory (RRAM) offers fast switching, high endurance and CMOS-compatible integration. Although functional devices below 10 nm have been already demonstrated, assessing the ultimate scaling of RRAM requires a detailed understanding and modeling of switching and reliab...

Full description

Saved in:
Bibliographic Details
Main Authors: Ielmini, D., Larentis, S., Balatti, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15
container_issue
container_start_page 9
container_title
container_volume
creator Ielmini, D.
Larentis, S.
Balatti, S.
description Resistive switching random access memory (RRAM) offers fast switching, high endurance and CMOS-compatible integration. Although functional devices below 10 nm have been already demonstrated, assessing the ultimate scaling of RRAM requires a detailed understanding and modeling of switching and reliability processes. This work discusses the modeling of bipolar switching in RRAM. An analytical model is first introduced to describe the temperature- and field-accelerated growth of the conductive filament (CF) induced by ion migration. The analytical model accounts for time-resolved data of the set transition, highlighting the central role of voltage as the driving parameter for set/reset transitions. The analytical model also accounts for the switching parameters as a function of the compliance current. A numerical model is then presented, allowing for a detailed description of the gradual increase during the reset transition. The numerical model highlights the different CF morphology in programmed states obtained by either set or reset. The improved insight into the switching process and the newly developed simulation tools enable device design, reliability prediction and materials engineering in RRAM.
doi_str_mv 10.1109/IIRW.2012.6468905
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6468905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6468905</ieee_id><sourcerecordid>6468905</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-11667f920eed2d282a6dae317ec618b6f9ae8a9f6d9c1add9a1a69999905d21d3</originalsourceid><addsrcrecordid>eNo9kNtKAzEYhOMJXGsfQLzJC2TNn2RzuCyl6kJFWRQvS9z820a2Xdks1b69LRbnZgZm-C6GkBvgOQB3d2VZveeCg8i10tbx4oRcgdJGClOAOiWZkEYxy6U--y-UE-ckAyc5s1bBJRmn9Mk53wO1BJ6R2ctql2LtW7ruArZxs6RdQ7ddO_glstDHLW5ojymmYR9p-o5DvTqs4oZ2PzEgrarJ0zW5aHybcHz0EXm7n71OH9n8-aGcTuYsgikGBqC1aZzgiEEEYYXXwaMEg7UG-6Eb59F61-jgavAhOA9eu4N4EQQEOSK3f9yIiIuvPq59v1sc75C_RHxPvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Physical modeling of voltage-driven resistive switching in oxide RRAM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ielmini, D. ; Larentis, S. ; Balatti, S.</creator><creatorcontrib>Ielmini, D. ; Larentis, S. ; Balatti, S.</creatorcontrib><description>Resistive switching random access memory (RRAM) offers fast switching, high endurance and CMOS-compatible integration. Although functional devices below 10 nm have been already demonstrated, assessing the ultimate scaling of RRAM requires a detailed understanding and modeling of switching and reliability processes. This work discusses the modeling of bipolar switching in RRAM. An analytical model is first introduced to describe the temperature- and field-accelerated growth of the conductive filament (CF) induced by ion migration. The analytical model accounts for time-resolved data of the set transition, highlighting the central role of voltage as the driving parameter for set/reset transitions. The analytical model also accounts for the switching parameters as a function of the compliance current. A numerical model is then presented, allowing for a detailed description of the gradual increase during the reset transition. The numerical model highlights the different CF morphology in programmed states obtained by either set or reset. The improved insight into the switching process and the newly developed simulation tools enable device design, reliability prediction and materials engineering in RRAM.</description><identifier>ISSN: 1930-8841</identifier><identifier>ISBN: 1467327492</identifier><identifier>ISBN: 9781467327497</identifier><identifier>EISSN: 2374-8036</identifier><identifier>EISBN: 1467327514</identifier><identifier>EISBN: 9781467327510</identifier><identifier>EISBN: 9781467327527</identifier><identifier>EISBN: 1467327522</identifier><identifier>DOI: 10.1109/IIRW.2012.6468905</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Electrical resistance measurement ; Integrated circuits ; Numerical models ; Resistance ; Switches ; Voltage measurement</subject><ispartof>2012 IEEE International Integrated Reliability Workshop Final Report, 2012, p.9-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6468905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6468905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ielmini, D.</creatorcontrib><creatorcontrib>Larentis, S.</creatorcontrib><creatorcontrib>Balatti, S.</creatorcontrib><title>Physical modeling of voltage-driven resistive switching in oxide RRAM</title><title>2012 IEEE International Integrated Reliability Workshop Final Report</title><addtitle>IIRW</addtitle><description>Resistive switching random access memory (RRAM) offers fast switching, high endurance and CMOS-compatible integration. Although functional devices below 10 nm have been already demonstrated, assessing the ultimate scaling of RRAM requires a detailed understanding and modeling of switching and reliability processes. This work discusses the modeling of bipolar switching in RRAM. An analytical model is first introduced to describe the temperature- and field-accelerated growth of the conductive filament (CF) induced by ion migration. The analytical model accounts for time-resolved data of the set transition, highlighting the central role of voltage as the driving parameter for set/reset transitions. The analytical model also accounts for the switching parameters as a function of the compliance current. A numerical model is then presented, allowing for a detailed description of the gradual increase during the reset transition. The numerical model highlights the different CF morphology in programmed states obtained by either set or reset. The improved insight into the switching process and the newly developed simulation tools enable device design, reliability prediction and materials engineering in RRAM.</description><subject>Analytical models</subject><subject>Electrical resistance measurement</subject><subject>Integrated circuits</subject><subject>Numerical models</subject><subject>Resistance</subject><subject>Switches</subject><subject>Voltage measurement</subject><issn>1930-8841</issn><issn>2374-8036</issn><isbn>1467327492</isbn><isbn>9781467327497</isbn><isbn>1467327514</isbn><isbn>9781467327510</isbn><isbn>9781467327527</isbn><isbn>1467327522</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kNtKAzEYhOMJXGsfQLzJC2TNn2RzuCyl6kJFWRQvS9z820a2Xdks1b69LRbnZgZm-C6GkBvgOQB3d2VZveeCg8i10tbx4oRcgdJGClOAOiWZkEYxy6U--y-UE-ckAyc5s1bBJRmn9Mk53wO1BJ6R2ctql2LtW7ruArZxs6RdQ7ddO_glstDHLW5ojymmYR9p-o5DvTqs4oZ2PzEgrarJ0zW5aHybcHz0EXm7n71OH9n8-aGcTuYsgikGBqC1aZzgiEEEYYXXwaMEg7UG-6Eb59F61-jgavAhOA9eu4N4EQQEOSK3f9yIiIuvPq59v1sc75C_RHxPvQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Ielmini, D.</creator><creator>Larentis, S.</creator><creator>Balatti, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Physical modeling of voltage-driven resistive switching in oxide RRAM</title><author>Ielmini, D. ; Larentis, S. ; Balatti, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-11667f920eed2d282a6dae317ec618b6f9ae8a9f6d9c1add9a1a69999905d21d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical models</topic><topic>Electrical resistance measurement</topic><topic>Integrated circuits</topic><topic>Numerical models</topic><topic>Resistance</topic><topic>Switches</topic><topic>Voltage measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Ielmini, D.</creatorcontrib><creatorcontrib>Larentis, S.</creatorcontrib><creatorcontrib>Balatti, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ielmini, D.</au><au>Larentis, S.</au><au>Balatti, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Physical modeling of voltage-driven resistive switching in oxide RRAM</atitle><btitle>2012 IEEE International Integrated Reliability Workshop Final Report</btitle><stitle>IIRW</stitle><date>2012-10</date><risdate>2012</risdate><spage>9</spage><epage>15</epage><pages>9-15</pages><issn>1930-8841</issn><eissn>2374-8036</eissn><isbn>1467327492</isbn><isbn>9781467327497</isbn><eisbn>1467327514</eisbn><eisbn>9781467327510</eisbn><eisbn>9781467327527</eisbn><eisbn>1467327522</eisbn><abstract>Resistive switching random access memory (RRAM) offers fast switching, high endurance and CMOS-compatible integration. Although functional devices below 10 nm have been already demonstrated, assessing the ultimate scaling of RRAM requires a detailed understanding and modeling of switching and reliability processes. This work discusses the modeling of bipolar switching in RRAM. An analytical model is first introduced to describe the temperature- and field-accelerated growth of the conductive filament (CF) induced by ion migration. The analytical model accounts for time-resolved data of the set transition, highlighting the central role of voltage as the driving parameter for set/reset transitions. The analytical model also accounts for the switching parameters as a function of the compliance current. A numerical model is then presented, allowing for a detailed description of the gradual increase during the reset transition. The numerical model highlights the different CF morphology in programmed states obtained by either set or reset. The improved insight into the switching process and the newly developed simulation tools enable device design, reliability prediction and materials engineering in RRAM.</abstract><pub>IEEE</pub><doi>10.1109/IIRW.2012.6468905</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-8841
ispartof 2012 IEEE International Integrated Reliability Workshop Final Report, 2012, p.9-15
issn 1930-8841
2374-8036
language eng
recordid cdi_ieee_primary_6468905
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Electrical resistance measurement
Integrated circuits
Numerical models
Resistance
Switches
Voltage measurement
title Physical modeling of voltage-driven resistive switching in oxide RRAM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Physical%20modeling%20of%20voltage-driven%20resistive%20switching%20in%20oxide%20RRAM&rft.btitle=2012%20IEEE%20International%20Integrated%20Reliability%20Workshop%20Final%20Report&rft.au=Ielmini,%20D.&rft.date=2012-10&rft.spage=9&rft.epage=15&rft.pages=9-15&rft.issn=1930-8841&rft.eissn=2374-8036&rft.isbn=1467327492&rft.isbn_list=9781467327497&rft_id=info:doi/10.1109/IIRW.2012.6468905&rft.eisbn=1467327514&rft.eisbn_list=9781467327510&rft.eisbn_list=9781467327527&rft.eisbn_list=1467327522&rft_dat=%3Cieee_6IE%3E6468905%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-11667f920eed2d282a6dae317ec618b6f9ae8a9f6d9c1add9a1a69999905d21d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6468905&rfr_iscdi=true